Skip to main content
Log in

Ultrastructural analysis of neuronal synapses using state-of-the-art nano-imaging techniques

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Neuronal synapses are functional nodes in neural circuits. Their organization and activity define an individual’s level of intelligence, emotional state and mental health. Changes in the structure and efficacy of synapses are the biological basis of learning and memory. However, investigation of the molecular architecture of synapses has been impeded by the lack of efficient techniques with sufficient resolution. Recent developments in state-of-the-art nano-imaging techniques have opened up a new window for dissecting the molecular organization of neuronal synapses with unprecedented resolution. Here, we review recent technological advances in nano-imaging techniques as well as their applications to the study of synapses, emphasizing super-resolution light microscopy and 3-dimensional electron tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cajal SR. The Structure and Connexions of Neurons. Nobel Lecture, 1906. URL: http://nobelprize.org/medicine/laureates/1906/cajal-lecture.html.

  2. DeFelipe J. From the connectome to the synaptome: An epic love story. Science 2010, 330: 1198–1201.

    Article  PubMed  CAS  Google Scholar 

  3. Mayford M, Siegelbaum SA, Kandel ER. Synapses and memory storage. Cold Spring Harb Perspect Biol 2012, 4. doi: 10.1101/cshperspect.a005751.

  4. Goto Y, Yang CR, Otani S. Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biol Psychiatry 2010, 67: 199–207.

    Article  PubMed  Google Scholar 

  5. Llinas RR. The contribution of Santiago Ramon y Cajal to functional neuroscience. Nat Rev Neurosci 2003, 4: 77–80.

    Article  PubMed  CAS  Google Scholar 

  6. Sherrington CS. The Integrative Action of the Nervous System. New York: Charles Scribner’s Sons, 1906.

    Google Scholar 

  7. Foster. M, Sherrington CS. A Textbook of Physiology. 7th ed. London: MacMillan & Co Ltd, 1897.

    Google Scholar 

  8. Lopez-Munoz F, Boya J, Alamo C. Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramon y Cajal. Brain Res Bull 2006, 70: 391–405.

    Article  PubMed  Google Scholar 

  9. Palay SL. Synapses in the central nervous system. J Biophys Biochem Cytol 1956, 2: 193–202.

    Article  PubMed  CAS  Google Scholar 

  10. Palay SL. The morphology of synapses of the central nervous system. Exp Cell Res 1958, 14: 275–293.

    PubMed  CAS  Google Scholar 

  11. Gray EG. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 1959, 93: 420–433.

    PubMed  CAS  Google Scholar 

  12. Gray EG. Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 1959, 183: 1592–1593.

    Article  PubMed  CAS  Google Scholar 

  13. Heuser JE, Reese TS. Evidence for recycling of synaptic vesicle membrane during transmitter release at frog neuromuscular junction. J Cell Biol 1973, 57: 315–344.

    Article  PubMed  CAS  Google Scholar 

  14. Harris KM, Weinberg RJ. Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol 2012, 4. doi: 10.1101/cshperspect.a005587.

  15. Sheng M, Hoogenraad CC. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 2007, 76: 823–847.

    Article  PubMed  CAS  Google Scholar 

  16. Wilt BA, Burns LD, Ho ETW, Ghosh KK, Mukamel EA, Schnitzer MJ. Advances in light microscopy for neuroscience. Annu Rev Neurosci 2009, 32: 435–506.

    Article  PubMed  CAS  Google Scholar 

  17. Giepmans BN, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science 2006, 312: 217–224.

    Article  PubMed  CAS  Google Scholar 

  18. Bayes A, Grant SGN. Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 2009, 10: 635–646.

    Article  PubMed  CAS  Google Scholar 

  19. Hell SW. Microscopy and its focal switch. Nat Methods 2009, 6: 24–32.

    Article  PubMed  CAS  Google Scholar 

  20. Hurbain I, Sachse M. The future is cold: cryo-preparation methods for transmission electron microscopy of cells. Biol Cell 2011, 103: 405–420.

    Article  PubMed  Google Scholar 

  21. Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy. Opt Lett 1994, 19: 780–782.

    Article  PubMed  CAS  Google Scholar 

  22. Hell SW. Far-field optical nanoscopy. Science 2007, 316: 1153–1158.

    Article  PubMed  CAS  Google Scholar 

  23. Gustafsson MG. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 2005, 102: 13081–13086.

    Article  PubMed  CAS  Google Scholar 

  24. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006, 3: 793–795.

    Article  PubMed  CAS  Google Scholar 

  25. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313: 1642–1645.

    Article  PubMed  CAS  Google Scholar 

  26. Hess ST, Girirajan TP, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 2006, 91: 4258–4272.

    Article  PubMed  CAS  Google Scholar 

  27. Lucic V, Forster F, Baumeister W. Structural studies by electron tomography: from cells to molecules. Annu Rev Biochem 2005, 74: 833–865.

    Article  PubMed  CAS  Google Scholar 

  28. Dani A, Huang B. New resolving power for light microscopy: applications to neurobiology. Curr Opin Neurobiol 2010, 20: 648–652.

    Article  PubMed  CAS  Google Scholar 

  29. Huang B, Babcock H, Zhuang XW. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 2010, 143: 1047–1058.

    Article  PubMed  CAS  Google Scholar 

  30. Dyba M, Hell SW. Focal spots of size λ/23 open up far-field florescence microscopy at 33 nm axial resolution. Phys Rev Lett 2002, 88: 163901.

    Article  PubMed  Google Scholar 

  31. Schmidt R, Wurm CA, Jakobs S, Engelhardt J, Egner A, Hell SW. Spherical nanosized focal spot unravels the interior of cells. Nat Methods 2008, 5: 539–544.

    Article  PubMed  CAS  Google Scholar 

  32. Schmidt R, Wurm CA, Punge A, Egner A, Jakobs S, Hell SW. Mitochondrial cristae revealed with focused light. Nano Lett 2009, 9: 2508–2510.

    Article  PubMed  CAS  Google Scholar 

  33. Hofmann M, Eggeling C, Jakobs S, Hell SW. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 2005, 102: 17565–17569.

    Article  PubMed  CAS  Google Scholar 

  34. Ding JB, Takasaki KT, Sabatini BL. Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 2009, 63: 429–437.

    Article  PubMed  CAS  Google Scholar 

  35. Urban NT, Willig KI, Hell SW, Nagerl UV. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 2011, 101: 1277–1284.

    Article  PubMed  CAS  Google Scholar 

  36. Berning S, Willig KI, Sfeffens H, Dibaj P, Hell SW. Nanoscopy in a living mouse brain. Science 2012, 335: 551.

    Article  PubMed  CAS  Google Scholar 

  37. Liu KS, Siebert M, Mertel S, Knoche E, Wegener S, Wichmann C, et al. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. Science 2011, 334: 1565–1569.

    Article  PubMed  CAS  Google Scholar 

  38. Hua Y, Sinha R, Thiel CS, Schmidt R, Huve J, Martens H, et al. A readily retrievable pool of synaptic vesicles. Nat Neurosci 2011, 14: 833–839.

    Article  PubMed  CAS  Google Scholar 

  39. Denker A, Krohnert K, Buckers J, Neher E, Rizzoli SO. The reserve pool of synaptic vesicles acts as a buffer for proteins involved in synaptic vesicle recycling. Proc Natl Acad Sci U S A 2011, 108: 17183–17188.

    Article  PubMed  CAS  Google Scholar 

  40. Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy. Annu Rev Biochem 2009, 78: 993–1016.

    Article  PubMed  CAS  Google Scholar 

  41. Xu K, Babcock HP, Zhuang X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 2012, 9: 185–188.

    Article  PubMed  CAS  Google Scholar 

  42. Bates M, Huang B, Dempsey GT, Zhuang X. Multicolor superresolution imaging with photo-switchable fluorescent probes. Science 2007, 317: 1749–1753.

    Article  PubMed  CAS  Google Scholar 

  43. Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci U S A 2007, 104: 20308–20313.

    Article  PubMed  CAS  Google Scholar 

  44. Bates M, Dempsey GT, Chen KH, Zhuang X. Multicolor superresolution fluorescence imaging via multi-parameter fluorophore detection. Chemphyschem 2012, 13: 99–107.

    Article  PubMed  CAS  Google Scholar 

  45. Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 2008, 320: 246–249.

    Article  PubMed  CAS  Google Scholar 

  46. Jones SA, Shim SH, He J, Zhuang X. Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 2011, 8: 499–508.

    Article  PubMed  CAS  Google Scholar 

  47. Dani A, Huang B, Bergan J, Dulac C, Zhuang X. Superresolution imaging of chemical synapses in the brain. Neuron 2010, 68: 843–856.

    Article  PubMed  CAS  Google Scholar 

  48. Frost NA, Shroff H, Kong H, Betzig E, Blanpied TA. Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron 2010, 67: 86–99.

    Article  PubMed  CAS  Google Scholar 

  49. Tardin C, Cognet L, Bats C, Lounis B, Choquet D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J 2003, 22: 4656–4665.

    Article  PubMed  CAS  Google Scholar 

  50. Heine M, Groc L, Frischknecht R, Beique JC, Lounis B, Rumbaugh G, et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 2008, 320: 201–205.

    Article  PubMed  CAS  Google Scholar 

  51. Kerr JM, Blanpied TA. Subsynaptic AMPA receptor distribution is acutely regulated by actin-driven reorganization of the postsynaptic density. J Neurosci 2012, 32: 658–673.

    Article  PubMed  CAS  Google Scholar 

  52. Derosier DJ, Klug A. Reconstruction of three dimensional structures from electron micrographs. Nature 1968, 217: 130–134.

    Article  Google Scholar 

  53. Ruiz T, Erk I, Lepault J. Electron cryo-microscopy of vitrified biological specimens: towards high spatial and temporal resolution. Biol Cell 1994, 80: 203–210.

    PubMed  CAS  Google Scholar 

  54. Adrian M, Dubochet J, Lepault J, McDowall AW. Cryo-electron microscopy of viruses. Nature 1984, 308: 32–36.

    Article  PubMed  CAS  Google Scholar 

  55. Erk I, Michel M, Lepault J. Electron cryo-microscopy of vitrified bulk biological specimens: ideal and real structures of water-lipid phases. J Microsc 1996, 182: 15–23.

    PubMed  CAS  Google Scholar 

  56. Kirschning E, Rutter G, Hohenberg H. High-pressure freezing and freeze-substitution of native rat brain: Suitability for preservation and immunoelectron microscopic localization of myelin glycolipids. J Neurosci Res 1998, 53: 465–474.

    Article  PubMed  CAS  Google Scholar 

  57. Vanhecke D, Asano S, Kochovski Z, Fernandez-Busnadiego R, Schrod N, Baumeister W, et al. Cryo-electron tomography: methodology, developments and biological applications. J Microsc 2011, 242: 221–227.

    Article  PubMed  CAS  Google Scholar 

  58. Zuber B, Nikonenko I, Klauser P, Muller D, Dubochet J. The mammalian central nervous synaptic cleft contains a high density of periodically organized complexes. Proc Natl Acad Sci U S A 2005, 102: 19192–19197.

    Article  PubMed  CAS  Google Scholar 

  59. Chen X, Winters C, Azzam R, Li X, Galbraith JA, Leapman RD, et al. Organization of the core structure of the postsynaptic density. Proc Natl Acad Sci U S A 2008, 105: 4453–4458.

    Article  PubMed  CAS  Google Scholar 

  60. Chen X, Nelson CD, Li X, Winters CA, Azzam R, Sousa AA, et al. PSD-95 is required to sustain the molecular organization of the postsynaptic density. J Neurosci 2011, 31: 6329–6338.

    Article  PubMed  CAS  Google Scholar 

  61. Liu J, Taylor DW, Krementsova EB, Trybus KM, Taylor KA. Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography. Nature 2006, 442: 208–211.

    PubMed  CAS  Google Scholar 

  62. Grunewald K, Desai P, Winkler DC, Heymann JB, Belnap DM, Baumeister W, et al. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 2003, 302: 1396–1398.

    Article  PubMed  Google Scholar 

  63. Milne JL, Subramaniam S. Cryo-electron tomography of bacteria: progress, challenges and future prospects. Nat Rev Microbiol 2009, 7: 666–675.

    Article  PubMed  CAS  Google Scholar 

  64. Nicastro D, Frangakis AS, Typke D, Baumeister W. Cryo-electron tomography of neurospora mitochondria. J Struct Biol 2000, 129: 48–56.

    Article  PubMed  CAS  Google Scholar 

  65. Fernandez-Busnadiego R, Schrod N, Kochovski Z, Asano S, Vanhecke D, Baumeister W, et al. Insights into the molecular organization of the neuron by cryo-electron tomography. J Electron Microsc (Tokyo) 2011, 60(Suppl 1): S137–148.

    Article  CAS  Google Scholar 

  66. Fernandez-Busnadiego R, Zuber B, Maurer UE, Cyrklaff M, Baumeister W, Lucic V. Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography. J Cell Biol 2010, 188: 145–156.

    Article  PubMed  CAS  Google Scholar 

  67. Beck M, Lucic V, Forster F, Baumeister W, Medalia O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 2007, 449: 611–615.

    Article  PubMed  CAS  Google Scholar 

  68. Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, et al. Determining the architectures of macromolecular assemblies. Nature 2007, 450: 683–694.

    Article  PubMed  CAS  Google Scholar 

  69. Lucic V, Kossel AH, Yang T, Bonhoeffer T, Baumeister W, Sartori A. Multiscale imaging of neurons grown in culture: from light microscopy to cryo-electron tomography. J Struct Biol 2007, 160: 146–156.

    Article  PubMed  Google Scholar 

  70. Lucic V, Yang T, Schweikert G, Forster F, Baumeister W. Morphological characterization of molecular complexes present in the synaptic cleft. Structure 2005, 13: 423–434.

    Article  PubMed  CAS  Google Scholar 

  71. Sartori A, Gatz R, Beck F, Rigort A, Baumeister W, Plitzko JM. Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 2007, 160: 135–145.

    Article  PubMed  Google Scholar 

  72. Landis DM, Hall AK, Weinstein LA, Reese TS. The Organization of cytoplasm at the presynaptic active zone of a central nervoussystem synapse. Neuron 1988, 1: 201–209.

    Article  PubMed  CAS  Google Scholar 

  73. Siksou L, Rostaing P, Lechaire JP, Boudier T, Ohtsuka T, Fejtova A, et al. Three-dimensional architecture of presynaptic terminal cytomatrix. J Neurosci 2007, 27: 6868–6877.

    Article  PubMed  CAS  Google Scholar 

  74. Dalva MB, McClelland AC, Kayser MS. Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci 2007, 8: 206–220.

    Article  PubMed  CAS  Google Scholar 

  75. Gerrow K, El-Husseini A. Cell adhesion molecules at the synapse. Front Biosci 2006, 11: 2400–2419.

    Article  PubMed  CAS  Google Scholar 

  76. Kennedy MB. Signal-processing machines at the postsynaptic density. Science 2000, 290: 750–754.

    Article  PubMed  CAS  Google Scholar 

  77. Takumi Y, Ramirez-Leon V, Laake P, Rinvik E, Ottersen OP. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci 1999, 2: 618–624.

    Article  PubMed  CAS  Google Scholar 

  78. Kharazia VN, Weinberg RJ. Tangential synaptic distribution of NMDA and AMPA receptors in rat neocortex. Neurosci Lett 1997, 238: 41–44.

    Article  PubMed  CAS  Google Scholar 

  79. Ji N, Shroff H, Zhong H, Betzig E. Advances in the speed and resolution of light microscopy. Curr Opin Neurobiol 2008, 18: 605–616.

    Article  PubMed  CAS  Google Scholar 

  80. Freitag B, Bischoff M, Mueller H, Hartel P, von Harrach HS. Subnanometer resolution in field-free imaging using a Titan80-300 with Lorentz lens and image Cs-corrector at 300kV acceleration voltage. Microsc Microanal 2009, 15: 184–185.

    Article  Google Scholar 

  81. Fukuda Y, Nagayama K. Zernike phase contrast cryo-electron tomography of whole mounted frozen cells. J Struct Biol 2012, 177: 484–489.

    Article  PubMed  CAS  Google Scholar 

  82. Murata K, Liu X, Danev R, Jakana J, Schmid MF, King J, et al. Zernike phase contrast cryo-electron microscopy and tomography for structure determination at nanometer and subnanometer resolutions. Structure 2010, 18: 903–912.

    Article  PubMed  CAS  Google Scholar 

  83. Jin L, Milazzo AC, Kleinfelder S, Li SD, Leblanc P, Duttweiler F, et al. Applications of direct detection device in transmission electron microscopy. J Struct Biol 2008, 161: 352–358.

    Article  PubMed  Google Scholar 

  84. Zanetti G, Riches JD, Fuller SD, Briggs JA. Contrast transfer function correction applied to cryo-electron tomography and subtomogram averaging. J Struct Biol 2009, 168: 305–312.

    Article  PubMed  Google Scholar 

  85. Beck M, Malmstrom JA, Lange V, Schmidt A, Deutsch EW, Aebersold R. Visual proteomics of the human pathogen Leptospira interrogans. Nat Methods 2009, 6: 817–823.

    Article  PubMed  CAS  Google Scholar 

  86. Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 2011, 9: e1001041.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Bi.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, C., Xia, C., Chen, X. et al. Ultrastructural analysis of neuronal synapses using state-of-the-art nano-imaging techniques. Neurosci. Bull. 28, 321–332 (2012). https://doi.org/10.1007/s12264-012-1249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1249-z

Keywords

Navigation