Skip to main content
Log in

Construction of a recombinant Escherichia coli JM109/A-68 for production of carboxymethylcellulase and comparison of its production with its wild type, Bacillus velezensis A-68 in a pilot-scale bioreactor

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A gene encoding carboxymethylcellulase (CMCase) of Bacillus velezensis A-68 had been cloned in Escherichia coli JM109. Based on productivity and economic aspect, rice bran and ammonium chloride were chosen to be optimal carbon and nitrogen sources for production of CMCase by E. coli JM109/A-68. The optimal conditions for rice bran, ammonium chloride, and initial pH of medium for production of CMCase were established by the response surface methodology (RSM). The concentrations of four salts in the medium, K2HPO4, NaCl, MgSO4·7H2O, and (NH4)2SO4, for production of CMCase also were optimized. The optimal temperatures for cell growth and production of CMCase were 37°C. The maximal production of CMCase by E. coli JM109/A-68 was 880.2 U/mL, which was 10.5 time higher than its wild type, B. velezensis A-68. The production of CMCase by E. coli JM109/A-68 was compared with that by B. velezensis A-68 in a 100 L pilot-scale bioreactor under the optimized conditions. The production of CMCase by E. coli JM109/A-68 was found to be the mixed-growth associated unlike the growthassociated production of CMCase by B. velezensis A-68.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Michy, V., A. L. Pometto III, and J. van Leeuwen (2011) Simultaneous saccharification and fermentation of ground corn stover for the production of fuel ethanol using Phanerochaete chrysosporium, Gloephyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011. J. Microbiol. Biotechnol. 21: 703–710.

    Article  Google Scholar 

  2. Gao, W., H. J. Kim, C. H. Chung, and J. W. Lee (2014) Enhanced production of carboxymethylcellulase by a marine bacterium, Bacillus velezensis A-68, by using rice hulls in pilot-scale bioreactor under optimized conditions for dissolved oxygen. J. Microbiol. 52: 755–761.

    Article  CAS  Google Scholar 

  3. Priyadharshini, R., N. P. T. Nguyen, J. H. Choi, Y. C. Kang, M. Jey, and J. K. Lee (2013) Optimization of ß-glucosidase production by a strain of Stereum hirsutum and its application in enzymatic saccharification. J. Microbiol. Biotechnol. 23: 351–356.

    Article  Google Scholar 

  4. Wei, G. Y., W. Gao, I. H. Jin, S. Y. Yoo, J. H. Lee, C. H. Chung, and J. W. Lee (2009) Pretreatment and saccharification of rice hulls for the production of fermentable sugars. Biotechnol. Bioproc. Eng. 14: 828–834.

    Article  CAS  Google Scholar 

  5. Wei, G. Y., Y. J. Lee, Y. J. Kim, I. H. Jin, J. H. Lee, and J. W. Lee (2010) Kinetic study on the pretreatment and enzymatic saccharification of rice hull for the production of fermentable sugars. Appl. Biochem. Biotechnol. 162: 1471–1482.

    Article  CAS  Google Scholar 

  6. Sukumaran, R. K., P. R. Singhania, G. M. Mathew, and A. Pandey (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 34: 421–424.

    Article  CAS  Google Scholar 

  7. Lee, Y. J., H. J. Kim, W. Gao, C. H. Chung, and J. W. Lee (2012) Statistical optimization for production of carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a recombinant Escherichia coli JM109/DL-3 from rice bran using response surface method. Biotechnol. Bioproc. Eng. 17: 227–235.

    Article  CAS  Google Scholar 

  8. Lee, E. J., B. H. Lee, B. K. Kim, and J. W. Lee (2013) Enhanced production of carboxymethylcellulase of a marine microorganism, Bacillus subtilis subsp. subtilis A-53 in a pilot-scaled bioreactor by a recombinant Escherichia coli JM109/A-53 from rice bran. Mol. Biol. Rep. 40: 3609–3621.

    Article  CAS  Google Scholar 

  9. Pandey, S., J. Kushwah, R. Tiwari, R. Kumar, V. S. Somvanshi, L. Nain, and A. Saxena (2014) Cloning and expreßsion of ß-1,4-endoglucanase gene from Bacillus subtilis isolated from soil long term irrigated with effluents of paper and pulp mill. Microbiol. Res. 169: 693–698.

    Article  CAS  Google Scholar 

  10. Kim, H. K. and M. Y. Pack (1989) Cloning and expreßsion of Cellulomonas fimi ß-glucosidase genes in Escherichia coli. Enz. Microb. Technol. 11: 313–316.

    Article  CAS  Google Scholar 

  11. Park, C. S., T. Kawaguchi, J. I. Sumitani, G. Takada, K. Izumori, and M. Arai (2005) Cloning and sequencing of exoglucanase gene from Strptomyces sp. M23 and its expression in Streptomyces lividans TK-24. J. Biosci. Bioeng. 99: 434–436.

    Article  CAS  Google Scholar 

  12. Kim, B. K., H. J. Kim, and J. W. Lee (2013) Rapid statistical optimization of cultural conditions for mass production of carboxymethylcellulase by a newly isolated marine bacterium, Bacillus velezensis A-68 from rice hulls. J. Life Sci. 23: 757–769.

    Article  Google Scholar 

  13. Lee, S. U., W. Gao, C. H. Chung, and J. W. Lee (2014) Construction of recombinant Escherichia coli JM109/LBH-10 and comparison of its optimal condition for production of carboxymethylcellulase with its wild type, Psychrobacter aquimaris LBH-10. J. Microb. Biochem. Technol. 6: 135–143.

    Article  CAS  Google Scholar 

  14. Li, W., X. Huan, Y. Zhou, Q. Ma, and Y. Chen (2009) Simultaneous cloning and expression of two cellulase genes from Bacillus subtilis newly isolated from Golden Takin (Budorcas taxicolor Bedfordi). Biochem. Biophys. Res. Comm. 383: 397–400.

    Article  CAS  Google Scholar 

  15. Lee, Y. J., H. J. Kim, W. Gao, C. H. Chung, and J. W. Lee (2011) Comparison of statistical methods for optimization of salts in medium for production of carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a recombinant E. coli JM109/DL-3. J. Life Sci. 21: 1205–1213.

    Article  Google Scholar 

  16. Kim, H. J., Y. I. Lee, W. Gao, C. H. Chung, and J. W. Lee (2012) Optimization of salts in medium for production of carboxymethylcellulase by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using two statistical methods. Kor. J. Chem. Eng. 29: 84–391.

    Google Scholar 

  17. Nielsen, H., J. Engelbrecht, S. Brunak, and J. van Leeuwee (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10: 1–6.

    Article  CAS  Google Scholar 

  18. Sajjad, M., M. I. M. Khan, R. Zafar, S. Ahmad, U. H. K. Niazi, and M. W. Akhtar (2012) Influence of positioning of carbohydrate binding module on the activity of endoglucanase CelA of Clostridium thermocellum. J. Biotechnol. 161: 206–212.

    Article  CAS  Google Scholar 

  19. Jo, K. I., Y. J. Lee, B. K. Kim, B. H. Lee, C. H. Chung, S. W. Nam, S. K. Kim, and J. W. Lee (2008) Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol. Bioproc. Eng. 13: 182–188.

    Article  CAS  Google Scholar 

  20. Gao, W., E. J. Lee, S. U. Lee, J. H. Li, C. H. Chung, and J. W. Lee (2012) Enhanced carboxymethylcellulase production by a newly isolated marine bacterium, Cellulophga lytica LBH-14, using rice bran. J. Microbiol. Biotechnol. 22: 1415–1425.

    Google Scholar 

  21. Kim, Y. J., W. Cao, S. U. Lee, and J. W. Lee (2012) Enhanced production of carboxymethylcellulase by a newly isolated marine microorganism Bacillus atrophaeus LBH-18 using rice bran, a byproduct from the rice processing industry. J. Life Sci. 22: 1295–1306.

    Article  Google Scholar 

  22. Lee, B. H., B. K. Kim, Y. J. Lee, and J. W. Lee (2010) Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enz. Microb. Technol. 46: 38–42.

    Article  CAS  Google Scholar 

  23. Marvig, C. L., R. M. Kristiansen, and D. S. Nielsen (2015) Growth/no growth models for Zygosaccharomyces rouxii associated with acidic, sweet intermediate moisture food products. Int. J. Food Microbiol. 192: 51–57.

    Article  CAS  Google Scholar 

  24. Lee, E. J., W. Gao, and J. W. Lee (2015) Enhanced production of carboxymethylcellulase of Bacillus subtilis subsp. subtilis A-53 by a recombinant Eshcherichia coli JM109/A-53 with pH and temperature shifts. Kor. J. Chem. Eng. 32: 113–117.

    Article  CAS  Google Scholar 

  25. Kim, H. J., Y. J. Lee, W. Gao, C. H. Chung, C. W. Son, and J. W. Lee (2011) Statistical optimization of fermentation conditions and comparison of their influence on production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using orthogonal array method. Biotechnol. Bioproc. Eng. 16: 542–548.

    Article  CAS  Google Scholar 

  26. Degering, C., T. Eggert, M. Puls, J. Bongaerts, S. Evers, K. Maurer, and K. Jaeger (2010) Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Appl. Environ. Microbiol. 76: 6370–6376.

    Article  CAS  Google Scholar 

  27. von Heijne, G. (1990) The signal peptide. J. Membr. Biol. 115: 195–201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, MH., Kang, DU. & Lee, JW. Construction of a recombinant Escherichia coli JM109/A-68 for production of carboxymethylcellulase and comparison of its production with its wild type, Bacillus velezensis A-68 in a pilot-scale bioreactor. Biotechnol Bioproc E 21, 601–611 (2016). https://doi.org/10.1007/s12257-016-0468-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0468-y

Keywords

Navigation