Skip to main content
Log in

Effect of extraction temperature on the diffusion coefficient of polysaccharides from Spirulina and the optimal separation method

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The extraction temperature had a significant impact on the concentration of polysaccharides derived from solid-liquid extraction of Spirulina. The polysaccharide concentration was significantly higher when the extraction was performed at 90°C than when it was performed at 80, 70, and 50°C. This result is related to the diffusion coefficients of the polysaccharides, which increased from 1.07 × 10−12 at 50°C to 3.02 × 10−12 m2/sec at 90°C. Using the Arrhenius equation, the pre-exponential factor (D 0 ) and the activation energy (E a ) for Spirulina polysaccharide extraction were calculated as 7.958 × 10−9 m2/sec and 24.0 kJ/mol, respectively. Among the methods used for the separation of Spirulina polysaccharides, cetyltrimethylammonium bromide (CTAB, method I) and organic solvent (ethanol, in methods II and III) provided similar yields of polysaccharides. However, the separation of polysaccharides using an ultrafiltration (UF) process (method III) and ethanol precipitation was superior to separation via CTAB or vacuum rotary evaporation (method II). The use of a membrane with a molecular weight cut-off (MWCO) of 30 kDa and an area of 0.01 m2 at a feed pressure of 103 kPa with a mean permeate flux of 39.3 L/m2/h and a retention rate of 95% was optimal for the UF process. The addition of two volumes (v/v) of ethanol, which gave a total polysaccharide content of approximately 4% dry weight, was found to be most suitable for polysaccharide precipitation. The results of a Sepharose 6B column separation showed that the molecular weights of the polysaccharides in fractions I and II were 212 and 12.6 kDa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wijesinghe, W. A. J. P. and Y. J. Jeon (2012) Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydr. Polym. 88: 13–20.

    Article  CAS  Google Scholar 

  2. Parikh, A. and D. Madamwar (2006) Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour. Technol. 97: 1822–1827.

    Article  CAS  Google Scholar 

  3. Cohen, Z. (1997) The Chemical of Spirulina. pp. 175–204. In: A. Vonshak (ed.). A Spirulina platensis (Arthrospira): Physiology, cell-biology and biotechnology. Taylor & Francis Inc., Philadelphia, USA.

    Google Scholar 

  4. Plaza, M., M. Herrero, A. Cifuentes, and E. Ibáñez (2009) Innovative natural functional ingredients from microalgae. J. Agric. Food Chem. 57: 7159–7170.

    Article  CAS  Google Scholar 

  5. Chirasuwan, N., R. Chaiklahan, M. Ruengjitchatchawalya, B. Bunnag, and M. Tanticharoen (2007) Anti HSV-1 activity of Spirulina platensis polysaccharide. Kasetsart J. Nat. Sci. 41: 311–318.

    CAS  Google Scholar 

  6. Yang, L., Y. Wang, Q. Zhou, P. Chen, Y. Wang, Y. Wang, T. Liu, and L. Xie (2009) Inhibitory effects of polysaccharide extract from Spirulina platensis on corneal neovascularization. Mol. Vis. 15: 1951–1961.

    CAS  Google Scholar 

  7. Pugh, N., A. S. Ross, N. H. ElSohly, A. M. ElSohly, and S. D. Pasco (2001) Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Med. 67: 737–742.

    Article  CAS  Google Scholar 

  8. Majdoub, H., B. M. Mansour, F. Chaubet, S. M. Roudesli, and M. R. Maaroufi (2009) Anticoagulant activity of a sulfated polysaccharide from the green alga Arthrospira platensis. Biochim. Biophys. Acta 1790: 1377–1381.

    Article  CAS  Google Scholar 

  9. Hayashi, T. and K. Hayashi (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J. Nat. Prod. 59: 83–87.

    Article  CAS  Google Scholar 

  10. Lee, J. B., T. Hayashi, K. Hayashi, U. Sankawa, M. Maeda, T. Nemoto, and H. Nakanishi (1998) Further purification and structural analysis of calcium spirulan from Spirulina platensis. J. Nat. Prod. 61: 1101–1104.

    Article  CAS  Google Scholar 

  11. Lee, J. B., T. Hayashi, K. Hayashi, and U. Sankawa (2000) Structural analysis of calcium spirulan (Ca-SP) -derived oligosaccharides using electrospray ionization mass spectrometry. J. Nat. Prod. 63: 136–138.

    Article  CAS  Google Scholar 

  12. Certenbach, D. D. (2002) Solid-liquid extraction technologies for manufacturing nutraceuticals from botainical. pp. 331–366. In: J. Shi, G. Mazza, and M. Le Maguer (eds.). Functional foods: Biochemical and processing aspects. CRC Press Inc., Boca Raton, Florida, USA.

    Google Scholar 

  13. Aguiler, J. M. (2003) Solid-liquid extraction. pp. 35–55. In: C. Tzia, and G. Liadakis (eds.). Food Optimization in Food Engineering. Marcel Dekker, NY, USA.

    Google Scholar 

  14. Cacace, J. E. and G. Mazza (2003) Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 59: 379–389.

    Article  Google Scholar 

  15. Loncin, M. and R. L. Merson (1979) Food engineering. Principles and selected applications. p. 494. Academic Press Inc., NY, USA.

    Google Scholar 

  16. Abdel-Kader, Z. M. (1991) A study of the apparent diffusion coefficient for ascorbic acid losses from pea during blanching in water. Food Chem. 40: 137–145.

    Article  CAS  Google Scholar 

  17. Peng, L., H. C. Hocart, W. J. Redmond, and E. R. Williamson (2000) Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta 211: 406–414.

    Article  CAS  Google Scholar 

  18. Azeredo, J. and R. Oliveira (1996) A new method for precipitating bacterial exopolysaccharides. Biotecnol. Technol. 10: 341–344.

    CAS  Google Scholar 

  19. Hasui, M., M. Matsuda, K. Okutani, and S. Shigeta (1995) In vitro antiviral activities of sulfated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. Int. J. Biol. Macromol. 17: 293–297.

    Article  CAS  Google Scholar 

  20. Zha, X. Q., J. J. Xiao, H. N. Zhang, J. H. Wang, L. H. Pan, X. F. Yang, and J. P. Luo (2012) Polysaccharides in Laminaria japonica (LP): Extraction, physicochemical properties and their hypolipidemic activities in diet-induced mouse model of atherosclerosis. Food Chem. 134: 244–252.

    Article  CAS  Google Scholar 

  21. Cai, W., X. Gu, and J. Tang (2008) Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta. Carbohydr. Polym. 71: 403–410.

    Article  CAS  Google Scholar 

  22. Wei, X., M. Chen, J. Xiao, Y. Liu, L. Yu, H. Zhang, and Y. Wang (2010) Composition and bioactivity of tea flower polysaccharides obtained by different methods. Carbohydr. Polym. 79: 418–422.

    Article  CAS  Google Scholar 

  23. Sheng, J., F. Yu, Z. Xin, L. Zhao, X. Zhu, and Q. Hu (2007) Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa. Food Chem. 105: 533–539.

    Article  CAS  Google Scholar 

  24. Challouf, R., L. Trabelsi, B. R. Dhieb, E. O. Abed, A. Yahia, K. Ghozzi, B. J. Ammar, H. Omran, and B. H. Ouada (2011) Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Braz. Arch. Biol. Technol. 54: 831–838.

    Article  CAS  Google Scholar 

  25. Chaiklahana, R., N. Chirasuwan, P. Triratana, V. Loha, S. Tia, and B. Bunnag (2013) Polysaccharide extraction from Spirulina sp. and its antioxidant capacity. Int. J. Biol. Macromol. 58: 73–78.

    Article  Google Scholar 

  26. Chaiklahan, R., N. Chirasuwan, V. Loha, and B. Bunnag (2008) Lipid and fatty acids extraction from the cyanobacterium Spirulina. ScienceAsia 34: 299–305.

    Article  CAS  Google Scholar 

  27. Crank, J. (1975) The Mathematics of Diffusion. 2nd ed., pp. 89–102. Oxford University Press, Ely House, London.

    Google Scholar 

  28. Ramesh, P. H. and R. N. Tharanathan (1999) Water-extracted polysaccharides of selected cereals and influence of temperature on the extractability of polysaccharides in sorghum. Food Chem. 64: 345–350.

    Article  CAS  Google Scholar 

  29. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  30. Mulet, A., A. Berna, V. Heredero, and C. Rossello (1988) Temperature influence on the sugar extraction from carob pods. Lebensm. Wiss. Technol. 21: 108–112.

    CAS  Google Scholar 

  31. Pinelo, M., J. Sineiro, and M. J. Núñez (2006) Mass transfer during continuous solid-liquid extraction of antioxidants from grape byproducts. J. Food Eng. 77: 57–63.

    Article  CAS  Google Scholar 

  32. Türker, N. and F. Erdo du (2006) Effects of pH and temperature of extraction medium on effective diffusion coefficient of anthocynanin pigments of black carrot (Daucus carota var. L.). J. Food Eng. 76: 579–583.

    Article  Google Scholar 

  33. Arroqui, C., T. R. Rumsey, A. Lopez, and P. Virseda (2002) Losses by diffusion of ascorbic acid during water blancing of potato tissue. J. Food Eng. 52: 25–30.

    Article  Google Scholar 

  34. Conidi, C., A. Cassano, and E. Drioli (2012) Recovery of phenolic compounds from orange press liquor by nanofiltration. Food Bioprod. Proc. 90: 867–874.

    Article  CAS  Google Scholar 

  35. Chaiklahan, R., N. Chirasuwan, V. Loha, S. Tia, and B. Bunnag (2011) Separation and purification of phycocyanin from Spirulina sp. using a membrane process. Bioresour. Technol. 102: 7159–7164.

    Article  CAS  Google Scholar 

  36. Hayashi, T., K. Hayashi, and I. Kojima (1996) Antiviral polysaccharide. U. S. Patent 5,585,365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratana Chaiklahan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaiklahan, R., Chirasuwan, N., Triratana, P. et al. Effect of extraction temperature on the diffusion coefficient of polysaccharides from Spirulina and the optimal separation method. Biotechnol Bioproc E 19, 369–377 (2014). https://doi.org/10.1007/s12257-013-0733-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0733-2

Keywords

Navigation