Skip to main content
Log in

Instantaneous 2-D visualization of spray combustion and flame luminosity of GTL and GTL-biodiesel fuel blend under quiescent ambient conditions

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

An experimental study has been performed on spray combustion and two-dimensional soot concentration in diesel (ULSD), GTL and GTL-biodiesel fuel jets under high-pressure, high-temperature quiescent conditions. Instantaneous images of the fuel jets were obtained with a high-speed camera. It was confirmed that by blending GTL with 20% rapeseed biodiesel, certain fuel properties such as kinematic viscosity, density, surface tension, volatility, lower heating value and others may be designed and improved to be more like those of conventional diesel fuel but with considerable decrease in the amount of sulfur, PAH, cold filter plugging point, etc. The results showed that the spray tip penetration increased and the spray cone angle decreased when 20% biodiesel fuel was added to GTL fuel. Autoignition of the GTL-biodiesel blend occurred slightly earlier than that of diesel fuel. Experiments under high-pressure, high-temperature conditions showed that higher injection pressure induced a lower soot formation rate. The integrated flame luminosity, which serves as an indicator of soot concentration in the fuel jet, was slightly higher for the GTL-biodiesel blend than for pure GTL fuel due to the slightly higher sulfur content of pure biodiesel fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, M. A., Ejim, C. E., Fleck, B. A. and Amirfazli, A. (2006). Effects of biodiesel fuel properties and its blends on atomization. SAE Paper No. 2006-01-0893.

  • Alleman, T. L., Clark, R., Nine, R., Wayne, S., Lansing, R., Jacobs, T., Eudy, L., Miyasoto, M., Oshinuga, A., Allison, S., Corcoran, T., Chatterjee, S., Cherrillo, R. A. and Virrels, I. (2004). Fuel property, emission test, and operability results from a fleet of class 6 vehicles operating on gas-to-liquid fuel and catalyzed diesel particle filters. SAE Paper No. 2004-01-2959.

  • Allen, C. A. W., Watts, K. C. R., Ackman, G. and Pegg, M. J. (1999a). Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. Fuel 78,11, 1319–1326.

    Article  Google Scholar 

  • Allen, C. A. W., Watts, K. C. and Ackman, R. G. (1999b). Predicting the surface tension of biodiesel fuels from their fatty acid ester composition. J. Am. Oil Chemist. Soc. 76,3, 317–323.

    Article  Google Scholar 

  • Allen, C. A. W. and Watts, K. C. (2000). Comparative analysis of the atomization characteristics of fifteen biodiesel fuel types. Am. Soc. Agric. Engrs. 43,2, 207–211.

    Google Scholar 

  • Arai, M., Tabata, M., Hiroyasu, H. and Shimizu, M. (1984). Disintegrating process and spray characterization of fuel jet injected by a diesel nozzle. SAE Paper No. 840275.

  • Azimov, U. B., Roziboyev, E. A., Kim, K. S., Jeong, D. S., Lee, Y. G. and Yun, J. E. (2008). Investigation of soot formation in diesel-GTL fuel blends under quiescent conditions. Int. J. Automotive Technology 9,5, 523–534.

    Article  Google Scholar 

  • Basha, S. A., Gopal, K. R. and Jebaraj, S. (2009). A review on biodiesel production, combustion, emissions and performance. Renewable and Sustainable Energy Reviews, 13, 1628–1634.

    Article  Google Scholar 

  • Benjumea, P., Agudelo, J. and Agudelo, A. (2008). Basic properties of palm oil biodiesel-diesel blends. Fuel, 87, 2069–2075.

    Article  Google Scholar 

  • Boehman, A. L., Song, J. and Alam, M. (2005). Impact of biodiesel blending on diesel soot and the regeneration of particulate filters. Energy & Fuels, 19, 1857–1864.

    Article  Google Scholar 

  • Bougie, B., Tulej, M., Dreier, T., Dam, N. J., Ter Meulen, J. J. and Gerber, T. (2005). Optical diagnostics of diesel spray injections and combustion in a high-pressure hightemperature cell. J. Appl. Phys., B80, 1039–1045.

    Google Scholar 

  • Bozbas, K. (2008). Biodiesel as an alternative motor fuel: Production and policies in the european union. Reneable and Sustainable Energy Reviews, 12, 542–552.

    Article  Google Scholar 

  • Bruneaux, G., Verhoeven, D. and Baritaud, T. (1999). Highpressure diesel spray and combustion visualization in a transparent model diesel engine. SAE Paper No. 1999-01-3648.

  • Canaki, M. and Van Gerpen, J. H. (2003). Comparison of engine performance and emissions for petroleum diesel fuel. Yellow grease biodiesel and soybean oil biodiesel. Trans. ASAE 46,4, 937–944.

    Google Scholar 

  • Candeia, R. A., Silva, M. C. D., Carvalho Filho, J. R., Brasilino, M. G. A., Bicudo, T. C. and Santos, I. M. G. (2009). Influence of soybean biodiesel content on basic properties of biodiesel-diesel blends. Fuel, 88, 738–743.

    Article  Google Scholar 

  • Carraretto, C., Macor, A., Mirandola, A., Stoppato, A. and Tonon, S. (2004). Biodiesel as alternative fuel: Experimental analysis and energetic evaluations. Energy, 29, 2195–2211.

    Article  Google Scholar 

  • Cheng, A. S., Upatnieks, A. and Mueller, C. J. (2006). Investigation of the impact of biodiesel fuelling on NOx emissions using an optical direct injection diesel engine. Int. J. Engine Research, 7, 297–318.

    Article  MATH  Google Scholar 

  • Coronado, C. R., de Carvalho Jr, J. A., Yoshioka, J. T. and Silveira, J. L. (2009). Determination of ecological efficiency in internal combustion engines: The use of biodiesel. Applied Thermal Engineering, 29, 1887–1892.

    Article  Google Scholar 

  • Crua, C., Kennaird, D. A. and Heikal, M. R. (2003). Laserinduced incandescence study of diesel soot formation in a rapid compression machine at elevated pressures. Combustion and Flame, 135, 475–488.

    Article  Google Scholar 

  • Dec, J. E., Espey, C., Zur Loye, A. O. and Siebers, D. L. (1992). Symposium on mechanisms and chemistry of pollutant formation and control from internal combustion engines. The Division of Petroleum Chemistry, Washington, USA, 1414–1429.

    Google Scholar 

  • Delacourt, E., Desmet, B. and Besson, B. (2005). Characterization of very high diesel sprays using digital imaging techniques. Fuel, 84, 859–867.

    Article  Google Scholar 

  • Demirbas, A. (2007). Importance of biodiesel as transportation fuel. Energy Policy, 35, 4661–4670.

    Article  Google Scholar 

  • Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50, 14–34.

    Article  Google Scholar 

  • Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog. Energy Combust. Sci., 31, 466–487.

    Article  Google Scholar 

  • Desantes, J. M., Payri, R., Salvador, F. J. and Gil, A. (2006). Development and validation of a theoretical model for diesel spray penetration. Fuel, 85, 910–917.

    Article  Google Scholar 

  • Desantes, J. M., Payri, R., Garcia, J. M. and Salvador, F. J. (2007). A contribution to the understanding of isothermal diesel spray dynamics. Fuel, 86, 1093–1101.

    Article  Google Scholar 

  • DiGeorgio, F., Laforgia, D. and Damiani, V. (1995). Investigation on drop size distribution in the spray of a fivehole. V.C.O. nozzle at high feeding pressure. SAE Paper No. 950087.

  • Dobbs, H. H., Villahermosa, L. A., Stavinoha, L. L. and Heywood, J. B. (2000). Alternative fuels: Gas to liquids as potential 21st century truck fuels. SAE Paper No. 2000-01-3422.

  • Durbin, T. D., Cocker III, D. R., Sawant, A. A., Johnson, K., Miller, J. W., Holden, B. B., Helgeson, N. L. and Jack, J. A. (2007). Regulated emissions from biodiesel fuels from on/off-road applications. Atmospheric Environment, 41, 5647–5658.

    Article  Google Scholar 

  • Ejim, C. E., Fleck, B. A. and Amirfazli, A. (2007). Analytical study for atomization of biodiesels and their blends in a typical injector: Surface tension and viscosity effects. Fuel, 86, 1534–1544.

    Article  Google Scholar 

  • Fang, T., Coverdill, R. E., Lee, C. F. and White, R. A. (2005). Low temperature combustion within a small bore high speed direct injection (HSDI) diesel engine. SAE Paper No. 2005-01-0910.

  • Fukumoto, M., Oguma, M. and Goto, S. (2003). Experimental investigation of lubricity improvements of gas-to-liquid (GTL) fuels with additives for low sulphur diesel fuel. SAE Paper No. 2003-01-1948.

  • Gill, K., Marriner, C., Sison, K. and H. Zhao (2005). Incylinder studies of multiple diesel fuel injection in a single cylinder optical engine. SAE Paper No. 2005-01-0915.

  • Gulder, O. L. and Glavincevski, B. (1991). Influence of fuel-bound sulfur on soot formation in laminar diffusion flames of liquid hydrocarbons. Combustion Science and Technology, 77, 337–343.

    Article  Google Scholar 

  • Heywood, J. B. (1989). Internal Combustion Engine Fundamentals. McGraw-Hill. New York. 539–541.

    Google Scholar 

  • Hiroyasu, H. and Arai, M. (1990). Structures of fuel sprays in diesel engines. SAE Paper No. 900475.

  • Hofman, V. (2003). Biodiesel Fuel. NDSU Extension Service, North Dakota State University of Agriculture. Applied Science and US department of Agriculture Cooperating. Fargo, North Dacota.

    Google Scholar 

  • Inagaki, K., Takasu, S. and Nakakita, K. (1999). In-cylinder quantitative soot concentration measurement by laserinduced incandescence. SAE Paper No. 1999-01-0508.

  • Johansen, K., Gabrielsson, P., Stavnsbjerg, P., Bak, F., Andersen, E. and Autrup, H. (1997). Effect of upgraded diesel fuels and oxidation catalysts on emission properties, especially PAH and genotoxicity. SAE Paper No. 973001.

  • Joshi, R. M. and Pegg, M. J. (2007). Flow properties of biodiesel fuel blends at low temperatures. Fuel, 86, 143–151.

    Article  Google Scholar 

  • Kim, K. S., Beschieru, V., Jeong, D. S. and Lee, Y. (2007). Experimental investigation and comparison of spray and combustion characteristics of GTL and diesel fuels. Int. J. Automotive Technology 8,3, 275–281.

    Google Scholar 

  • Kitano, K., Sakata, I. and Clark, R. (2005). Effects of GTL fuel properties on DI diesel combustion. SAE Paper No. 2005-01-3763.

  • Kosaka, H., Nishigaki, T., Kamimoto, T. and Harada, S. (1995). A study on soot formation and oxidation in an unsteady spray flame via laser induced incandescence and scattering techniques. SAE Paper No. 952451.

  • Krahl, J., Munack, A., Grope, N., Ruschel, Y., Schroder, O. and Bunger, J. (2007). Biodiesel, rapeseed oil, gas-to-liquid, and a premium diesel fuel in a heavy duty diesel engines: endurance, emissions and health effects. Clean 35,5, 417–426.

    Google Scholar 

  • Krahl, J., Knothe, G., Munack, A., Ruschel, Y., Schroder, O., Hallier, E., Westphal, G. and Bunger, J. (2009). Comparison of exhaust emissions and their mutagenicity from the combustion of biodiesel, vegetable oil, gas-to-liquid and petrodiesel fuels. Fuel, 88, 1064–1069.

    Article  Google Scholar 

  • Lapuerta, M., Armas, O. and Rodrigues-Fernandez, J. (2008). Effect of biodiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science, 34, 198–223.

    Article  Google Scholar 

  • Lee, C. S., Park, S. W. and Kwon, S. I. (2005). An experimental study on the atomization and combustion characteristics of biodiesel-blended fuels. Energy and Fuels, 19, 2201–2208.

    Article  Google Scholar 

  • Lefebvre, H. (1989). Atomization and Sprays. Hemisphere Publishing Corporation. New York.

    Google Scholar 

  • Lim, M. C. H., Ayoko, G. A., Morawska, L., Ristovski, Z. D. and Jayaratne, R. (2005). Effect of fuel composition and engine operating conditions on polycyclic aromatic hydrocarbon emissions from a fleet of heavy-duty diesel buses. Atmospheric Environment 39,40, 7836–7848.

    Google Scholar 

  • Lim, M. C. H., Ayoko, G. A., Morawska, L., Ristovski, Z. D. and Jayaratne, E. R. (2007). The effect of fuel characteristics and engine operating conditions on the elemental composition of emissions from heavy duty diesel busses. Fuel, 86, 1831–1839.

    Article  Google Scholar 

  • Lin, Y. C., Lee, W. J., Wu, T. S. and Wang, C. T. (2006). Comparison of PAH and regulated harmful matter emissions from biodiesel blends and paraffinic fuel blends on engine accumulated mileage test. Fuel, 85, 2516–2523.

    Article  Google Scholar 

  • Mitchell, K., Steere, D. E., Taylor, J. A., Manicom, B., Fisher, J. E., Sienicki, E. J., Chiu, C. and Williams, P. (1994). Impact of diesel fuel aromatics on particulate, PAH and Nitro-PAH emissions. SAE Paper No. 942053.

  • Muller, C. J. and Martin, G. C. (2002). Effects of oxygenated compounds on combustion and soot evolution in a DI diesel engine: Broadband natural luminosity imaging. SAE Paper No. 2002-01-1631.

  • Nakayama, Y. and Tanida, Y. (1996). Atlas of Visualization, II. CRC Press, Inc.

  • Payri, F., Arregle, J., Fenollosa, C., Belot, G., Delage, A., Schaberg, P., Myburgh, I. and Botha, J. (2000). Characterisation of the injection-combustion process in a common-rail DI diesel engine running with sasol fischertropsch fuel. SAE Paper No. 2000-01-1803.

  • Pickett, L. M. and Siebers, D. L. (2004a). Soot in diesel fuel jets: Effects of ambient temperature, ambient density, and injection pressure. Combustion and Flame, 138, 114–135.

    Article  Google Scholar 

  • Pickett, L. M. and Siebers, D. L. (2004b). Non-sooting, low flame temperature mixing-controlled DI diesel combustion. SAE Paper No. 2004-01-1399.

  • Rudolph, V. and He, Y. (2004). Research and development trends in biodiesel. Dev. Chem. Eng. Miner. Process, 12, 461–474.

    Article  Google Scholar 

  • Sakai, A., Takeyama, H., Ogawa, H. and Miyamoto, N. (2004). Improvements in premixed charge compression ignition combustion and emissions with lower distillation temperature fuels. Int. J. Engine Research, 6, 433–442.

    Article  Google Scholar 

  • Schumacher, L. G., Borgelt, S. C., Fosseen, D., Goetz, W. and Hires, W. G. (1996). Heavy-duty engine exhaust emission tests using methyl ester soybean oil/diesel fuel blends. Bioresour. Technol., 57, 31–36.

    Article  Google Scholar 

  • Senda, J., Choi, D., Iwamuro, M., Fujimoto, H. and Asai, G. (2003). Experimental analysis on soot formation process in DI diesel combustion chamber by use of optical diagnostics. SAE Paper No. 2002-01-0893.

  • Senda, J., Ikeda, T., Haibara, T., Sakurai, S., Wada, Y. and Fujimoto, H. (2007). Spray and combustion characteristics of reformulate biodiesel with mixing of lower boiling point fuel. SAE Paper No. 2007-01-0621.

  • Siebers, D., Higgins, B. and Pickett, L. (2002). Flame liftoff on direct-injection diesel fuel jets: Oxygen concentration effects. SAE Paper No. 2002-01-0890.

  • Soltic, P., Edenhauser, D., Thurnheer, T., Schreiber, D. and Sankowski, A. (2009). Experimental investigation of mineral diesel fuel, GTL fuel, RME and neat soybean and rapeseed oil combustion in a heavy duty on-road engine with exhaust gas aftertreatment. Fuel, 88, 1–8.

    Article  Google Scholar 

  • Szybist, J. P., Song, J., Alam, M. and Boehman, A. L. (2007). Biodiesel combustion, emissions, and emission control. Fuel Processing Technology, 88, 679–691.

    Article  Google Scholar 

  • Tanaka, S., Takizawa, H., Shimizu, T. and Sanse, K. (1998). Effect of fuel compositions on PAH in particulate matter from DI diesel engine. SAE Paper No. 982648.

  • Tsolakis, A., Megaritis, A., Wyszynski, M. L. and Theinnoi, K. (2007). Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation). Energy, 32, 2072–2080.

    Article  Google Scholar 

  • Turrio-Baldassarri, L., Battistelli, C. L., Conti, L., Crebelli, R., De Berardis, B., Iamiceli, A. L., Gambino, M. and Iannaccone, S. (2004). Emission comparison of urban bus engine fueled with diesel oil and biodiesel blend. Science of the Total Environment, 327, 147–162.

    Article  Google Scholar 

  • US Department of Energy (2004). Biodiesel Handling and Use Guidelines. DOE/GO-102004-1999. Revised November 2004.

  • Vaaraslahti, K., Virtanen, A., Ristimaki, J. and Keskinen, J. (2004). Nucleation mode formation in heavy-duty diesel exhaust with and without a particulate filter. Envir. Sci. and Technology 38,18, 4884–4890.

    Article  Google Scholar 

  • Vattulainen, J. (1998). Experimental determination of spontaneous diesel flame emission spectra in a large diesel engine operated with different diesel fuel qualities. SAE Paper No. 981380.

  • Verhoeven, D. D., Vanhemelryck, J. L. and Baritaud, T. A. (1998). Macroscopic and ignition characteristics of highpressure sprays of single-component fuels. SAE Paper No. 981069.

  • Wu, T., Huang, Z., Zhang, W., Fang, J. and Yin, Q. (2007). Physical and chemical properties of GTL-diesel fuel blends and their effects on performance and emissions of a multicylinder DI compression ignition engine. Energy and Fuels, 21, 1908–1914.

    Article  Google Scholar 

  • Yamane, K., Uera, A. and Shimamoto, Y. (2001). Influence of physical and chemical properties of biodiesel fuels on injection, combustin and exhaust emission characteristics in a direct injection compression ignition engine. Int. J. Engine Research 2,4, 249–261.

    Article  Google Scholar 

  • Yoon, S. H., Park, S. H. and Lee, C. S. (2008). Experimental investigation on the fuel properties of biodiesel and its blends at various temperatures. Energy & Fuels, 22, 652–656.

    Article  Google Scholar 

  • Zhao, H. and Ladommatos, N. (1998). Optical diagnostics for soot and temperature measurement in diesel engines. Prog. Energy Combust. Sci., 24, 221–255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azimov, U.B., Kim, K.S., Jeong, D.S. et al. Instantaneous 2-D visualization of spray combustion and flame luminosity of GTL and GTL-biodiesel fuel blend under quiescent ambient conditions. Int.J Automot. Technol. 12, 159–171 (2011). https://doi.org/10.1007/s12239-011-0020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-011-0020-1

Key Words

Navigation