Skip to main content

Advertisement

Log in

Changes in Coastal Benthic Algae Succession Trajectories and Assemblages Under Contrasting Nutrient and Grazer Loads

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

An Erratum to this article was published on 24 June 2015

Abstract

Eutrophication plays a crucial role in coastal systems, driving changes in the composition and abundance of flora and fauna with consequent effects for the entire ecosystem. Sensitive to nutrient levels, micro- and macroalgal blooms serve as valuable indicators of eutrophication. The San Antonio Bay (Northern Argentinean Patagonia, 40° 43′ S, 64° 56′ W) provides an appropriate system to study in situ eutrophication processes on coastal communities. In a multi-scale approach, using two different kind of settlement substrates (micro: polyethylene terephthalate, and macro: ceramic), the present study followed benthic algal dynamics over one year, distinguishing changes in natural succession and seasonality. Strong differences were found in the biofilm assemblages after three days, marked by tube dwelling diatoms and Cocconeis spp. under high nutrient-grazer conditions and needle like diatoms (e.g. Nitzschia spp., Tabularia spp.) under lower nutrient-grazer loads. The succession continued by the colonization of macroalgae, with a higher recruitment rate in the nutrient and grazer rich environment with a concomitant higher diversity. Our results show that under higher nutrient-grazer conditions natural benthic succession not only differs in trajectory but in its final taxa composition promoting higher biodiversity and biomass accumulation. In addition, taxa specific substrate preferences interfere with the observed eutrophication pattern, suggesting substrate dependant interrelations between the bloom forming taxa. These findings provide evidence that nutrient enrichment can not only affect an established assemblage but also affect the early succession stages, changing the succession trajectory and thus the final assemblage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aleem, A.A. 1957. Succession of marine fouling organisms on test panels immersed in deep-water at la Jolla, California. Hydrobiologia 11: 40–58.

    Article  Google Scholar 

  • Al-Handal, A.Y., and A. Wulff. 2008. Marine epiphytic diatoms from the shallow sublittoral zone in Potter Cove, King George Island, Antarctica. Botanica Marina 51(5): 411–435.

    Article  Google Scholar 

  • Burkepile, D.E., and M.E. Hay. 2006. Herbivore vs. nutrient control of marine primary producers: Context-dependent effects. Ecology 87: 3128–3139.

    Article  Google Scholar 

  • Callow, M.E., A.R. Jennings, B. A:B:, C.E. Seegert, G. Amy, W. Leslie, A. Feinberg, R. Baney, and J.A. Callow. 2002. Microtopographic cues for settlement of zoospores of the green fouling alga Enteromorpha. Biofouling 18: 237–245.

    Article  Google Scholar 

  • Cattaneo, A. 1990. The effect of fetch on periphyton spatial variation. Hydrobiologia 206(1): 1–10.

  • Cejudo-Figueiras, C., I. Álvarez-Blanco, E. Bécares, and S. Blanco. 2010. Epiphytic diatoms and water quality in shallow lakes: the neutral substrate hypothesis revisited. Marine Freshwater Research 61: 1457–1467.

    Article  CAS  Google Scholar 

  • Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecological Progress Series 210: 223–253.

    Article  CAS  Google Scholar 

  • Connell, J.H., and R.O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist 111: 1119–1144.

    Article  Google Scholar 

  • Cuba, T.R., and N.J. Blake. 1983. The initial development of a marine fouling assemblage on a natural substrate in a subtropical estuary. Botanica Marina XXVI: 259–264.

    Google Scholar 

  • Davis, A.R. 2009. The role of mineral, living and artificial substrata in the development of subtidal assemblages. In Marine Hard Bottom Communities, ed. M. Wahl, 19–37. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Diaz, R.J., and R. Rosenberg. 2013. Overview of anthropogenically-induced hypoxic effects on marine benthic fauna, coastal hypoxia: consequences for living resources and ecosystems. In Coastal Hypoxia: Consequences for Living ressources and Ecosystems. American Geophysical Union: pp 129–145.

  • Doty, M.S. 1971. Measurement of water movement in reference to benthic algal growth. Botanica Marina 14: 32–35.

    Article  Google Scholar 

  • Duarte, C.M. 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87–112.

    Article  Google Scholar 

  • Fricke, A., M. Molis, C. Wiencke, N. Valdivia, and A.S. Chapman. 2008. Natural succession of macroalgal-dominated epibenthic assemblages at different water depths and after transplantation from deep to shallow water on Spitsbergen. Polar Biology 31: 1191–1203.

    Article  Google Scholar 

  • Fricke, A., M. Molis, C. Wiencke, N. Valdivia, and A.S. Chapman. 2011a. Effects of UV radiation on the structure of Arctic macrobenthic communities. Polar Biology 1-15.

  • Fricke, A., M. Teichberg, S. Beilfuss, and K. Bischof. 2011b. Succession patterns in algal turf vegetation on a Caribbean coral reef. Botanica Marina 54: 111–126.

    Article  Google Scholar 

  • Gari, E.N., and M.C. Corigliano. 2007. Spatial and temporal variations of Cocconeis euglypta (Ehrenb.) 1854 Grunow, 1884 in drift and periphyton. Brazilian Journal of Biology 67.

  • Geertz-Hansen, O., K. Sand-Jensen, D.F. Hansen, and A. Christiansen. 1993. Growth and grazing control of abundance of the marine macroalga Ulva lactuca L. in aeutrophic Danish estuary. Aquatic Botany 46: 101–109.

    Article  Google Scholar 

  • Hauxwell, J., J. Cebrian, and I. Valiela. 2003. Eelgrass Zostera marina loss intemperate estuaries: Relationship to land-derived nitrogen loads and effect of light limitation imposed by algae. Marine Ecology Progress Series 247: 59–73.

    Article  CAS  Google Scholar 

  • Hauxwell, J., J. Cebrian, and I. Valiela. 2006. Light dependence of Zostera marina annual growth dynamics in estuaries subject to different degrees of eutrophication. Aquatic Botany 84: 17–25.

    Article  Google Scholar 

  • Hillebrand, H., B. Worm, and H.K. Lotze. 2000. Marine microbenthic community structure regulated by nitrogen loading and grazing pressure. Marine Ecological Progress Series 204: 27–38.

    Article  CAS  Google Scholar 

  • Iribarne, O., P. Martinetto, E. Schwindt, F. Botto, A. Bortolus, and P.G. Borboroglu. 2003. Evidences of habitat displacement between two common soft-bottom SW Atlantic intertidal crabs. Journal of Experimental Marine Biology and Ecology 296: 167–182.

    Article  Google Scholar 

  • Jones, J.G. 1978. Spatial variation in epilithic algae in a stony stream (Wilfin Beck) with particular reference to Cocconeis placentula. Freshwater Biology 8: 539–546.

    Article  Google Scholar 

  • Kamermans, P., M. Erik-Jan, J.M. Verschuure, L. Lonneke Schrijvers, L. Franca, and A.T.A. Lien. 2002. Effect of grazing by isopods and amphipods on growth of Ulva spp. (Chlorophyta). Aquatic Ecology 36: 425–433.

    Article  Google Scholar 

  • Kattner, G. 1999. Storage of dissolved inorganic nutrients in seawater: Poisoning with mercuric chloride. Marine Chemistry 67(1–2): 61–66.

    Article  CAS  Google Scholar 

  • Kelly, M.G., and W. Brian Allan. 1995. The Trophic Diatom Index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444.

    Article  Google Scholar 

  • Lam, C., T. Harder, and P.-Y. Qian. 2005. Growth conditions of benthic diatoms affect quality and quantity of extracellular polymeric larval settlement cues. Marine Ecological Progress Series 294: 109–116.

    Article  Google Scholar 

  • Liess, A., K. Lange, F. Schulz, J.J. Piggott, C.D. Matthaei, and C.R. Townsend. 2009. Light, nutrients and grazing interact to determine diatom species richness via changes to productivity, nutrient state and grazer activity. Journal of Ecology 97(2): 326–336.

    Article  Google Scholar 

  • Littler, M.M. 1980. Morphological form and photosynthetic performances of marine macroalgae: Tests of a functional / form hypothesis. Botanica Marina 22: 161–166.

    Google Scholar 

  • Littler, M.M., D.S. Littler, and B.L. Brooks. 2010. The effects of nitrogen and phosphorus enrichment on algal community development: Artificial mini-reefs on the Belize Barrier Reef sedimentary lagoon. Harmful Algae 9: 255–263.

    Article  CAS  Google Scholar 

  • Lotze, H.K., and B. Worm. 2000. Variable and complementary effects of herbivores on different life stages of bloom-forming macroalgae. Marine Ecological Progress Series 200: 167–175.

    Article  Google Scholar 

  • Magurran, A.E. 1988. Ecological diversity and its measurements. USA: Princeton University Press. 179pp.

    Book  Google Scholar 

  • Martinetto, P., P. Daleo, M. Escapa, J. Alberti, J.P. Isacch, E. Fanjul, F. Botto, M.L. Piriz, G. Ponce, G. Casas, and O. Iribarne. 2010. High abundance and diversity of consumers associated with eutrophic areas in a semi-desert macrotidal coastal ecosystem in Patagonia, Argentina. Estuarine, Coastal and Shelf Science 88: 357–364.

    Article  CAS  Google Scholar 

  • Martinetto, P., M. Teichberg, I. Valiela, D. Montemayor, and O. Iribarne. 2011. Top-down and bottom-up controls in a high nutrient-high herbivory coastal environment. Marine Ecological Progress Series 69-82.

  • McClelland, J.W., and V. Ivan. 1998. Linking nitrogen in estuarine producers to land-derived sources. Limnology and Oceanography 43: 577–585.

    Article  CAS  Google Scholar 

  • Michels-Estrada, A. 1998. Effects of sewage water on diatoms (Bacillariophyceae) and water quality in two tropical streams in Costa Rica. Revista de Biología Tropical 46: 153–175.

    Google Scholar 

  • Mitchell, J.G., L. Seuront, M.J. Doubell, M. Dusan Losic, N.H. Voelcker, J. Seymour, and R. Lal. 2013. The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment. PLoS ONE. doi:10.1371/journal.pone.0059548.

    Google Scholar 

  • Mizuno, M. 1989. Autecological studies on the marine tube-dwelling diatom Berkeleya obtusa (GREV) GRUNOW. Scientific papers of the Institute of Algological Research, Faculty of Science, Hokkaido University 8(2): 63-115.

  • Nixon, S.W. 1995. Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 41: 199–219.

    Article  Google Scholar 

  • Osterling, M., and L. Pihl. 2001. Effects of filamentous green algal mats on benthic macrofaunal functional feeding groups. Journal of Experimental Marine Biology and Ecology 263: 159–183.

    Article  Google Scholar 

  • O'Toole, G., H.B. Kaplan, and R. Kolter. 2000. Biofilm formation as microbial development. Annual Review of Microbiology 54: 49–79.

    Article  Google Scholar 

  • Parodi, E.R., and S.B. Cao. 2003. Benthic microalgal communities in the inner part of the Bahía Blanca estuary (Argentina): A preliminary qualitative study. Oceanologica Acta 25: 279–284.

    Article  Google Scholar 

  • Patrick, R. 1976. The formation and maintenance of benthic diatom communities. Proceedings of the American Philosophical Society 120: 475–484.

    Google Scholar 

  • Piriz, M.L., M. Cecilia Eyras, and C.M. Rostagno. 2003. Changes in biomass and botanical composition of beach-cast seaweeds in a disturbed coastal area from Argentine Patagonia. Journal of Applied Phycology 15: 67–74.

    Article  Google Scholar 

  • Raimondi, P.T. 1988. Settlement cues and determination of the vertical limit of an intertidal barnacle. Ecology 69: 400–407.

    Article  Google Scholar 

  • Robinson, C.T., and S.R. Rushforth. 1987. Effects of physical disturbance and canopy cover on attached diatom community structure in an Idaho stream. Hydrobiologia 154: 49–59.

    Article  Google Scholar 

  • Round, F.E., R.M. Crawford, and D.G. Mann. 1990. The diatoms: biology & morphology of the Genera. Cambridge: Cambridge University Press.

  • Schneck, F., A. Schwarzbold, and A.S. Melo. 2011. Substrate roughness affects stream benthic algal diversity, assemblage composition, and nestedness. Journal of the North American Benthological Society 30: 1049–1056.

    Article  Google Scholar 

  • Steneck, R.S., and M.N. Dethier. 1994. A functional group approach to the structure of algal dominated communities. Oikos 69(3): 476–498.

  • Teichberg, M., S.E. Fox, C. Aguila, Y.S. Olsen, and I. Valiela. 2008. Macroalgal responses to experimental nutrient enrichment in shallow coastal waters: Growth, internal nutrient pools, and isotopic signatures. Marine Ecological Progress Series 368: 117–126.

    Article  CAS  Google Scholar 

  • Teichberg, M., S.E. Fox, Y.S. Olsen, V. Ivan, M. Paulina, I. Oscar, M. Elizabeti Yuriko, P. Monica AV, T.N. Corbisier, S.-J. Martín, P.-O. Federico, C. Paulo, F. Helena, Z. Andreina, C. Massimo, and T. davide. 2010. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Global Change Biology 16: 2624–2637.

    Google Scholar 

  • Underwood, A.J. 1997. Their logical design and interpretation using analyses of variance. Experiments in ecology. Cambridge: Cambridge University Press.

  • Valiela, I., J. McClelland, J. Hauxwell, P.J. Behr, D. Hersh, and K. Foreman. 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42: 1105–1118.

    Article  Google Scholar 

  • Wahl, M., M. Molis, A. Andrew Davis, S. Dobretsov, S.T. Dürr, J. Johansson, J. Kinley, D. Kirugara, M. Langer, H.K. Lotze, M. Thiel, J.C. Thomaso, B. Worm, and D.Z. Ben-Yosef. 2004. UVR effects that come and go: A global comparison of marine benthic community level impacts. Global Change Biology 10: 1962–1972.

    Article  Google Scholar 

  • Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.

    Article  Google Scholar 

  • Worm, B., H.K. Lotze, C. Boström, R. Engkvist, V. Labanauskas, and U. Sommer. 1999. Marine diversity shift linked to interactions among grazers, nutrients and propagule banks. Marine Ecological Progress Series 185: 309–314.

    Article  Google Scholar 

  • Wu, A.H.-F., K.N. Wu, K.L. Cho, and R. Lamb. 2013. Diatom attachment inhibition: Limiting surface accessibility through air entrapment. Biointerphases 8: 1–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a fellowship (AF, D/11/46030) within the Postdoc-program of the German Academic Exchange Service (DAAD); grant FONCYT (PICT-2010-0467) to R.J.L., grant PGI-24/Q060 (Universidad Nacional del Sur) to A.M., G.A.K., A.F.; and grants from CONICET, ANPCYT and Universidad Nacional de Mar del Plata to OI. Additional support for this study came from the and PICT CONAE-CONICET 04-2010 and Universidad Nacional del Comahue to M.N. We thank Joanna York (University of Delaware) for useful suggestion and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fricke.

Additional information

Communicated by James L. Pinckney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fricke, A., Kopprio, G.A., Alemany, D. et al. Changes in Coastal Benthic Algae Succession Trajectories and Assemblages Under Contrasting Nutrient and Grazer Loads. Estuaries and Coasts 39, 462–477 (2016). https://doi.org/10.1007/s12237-015-9999-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-015-9999-2

Keywords

Navigation