Skip to main content
Log in

Seagrass (Ruppia maritima L.) Life History Transitions in Response to Salinity Dynamics Along the Everglades-Florida Bay Ecotone

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Coastal estuaries receiving low and fluctuating freshwater flows are creating more variable salinity environments for submerged aquatic vegetation (SAV), including seagrasses. Some SAV species, such as Ruppia maritima L. (wigeongrass), are adapted to variable salinity, but rapid salinity changes can limit population persistence. For example, R. maritima historically dominated at the Everglades-Florida Bay ecotone under greater freshwater flows, but has a more limited distribution in recent decades with greater salinity variability. While R. maritima is an indicator species for Everglades restoration, little is known about how ecotone salinity patterns drive its current limited distribution in southern Everglades estuaries. Seed production is important for population maintenance in this disturbance-tolerant species. Thus, we examined R. maritima life history transitions, including seed germination, seedling and adult survival, and sexual reproduction under site-specific salinity variability across the Everglades ecotone. Seedlings were most susceptible to fluctuating salinity with only 13 % survival at the lower more marine ecotone site under conditions of relatively large-amplitude fluctuations. Adult survival also decreased from upper (93 %) to lower (25 %) sites, resulting in a significant decline in per capita clonal reproduction rates. The markedly low survival rate at the lower ecotone was associated with rapid salinity fluctuations (2.5–20 psu) with short periodicities (<24 h). In addition, no sexual reproduction occurred at any of our ecotone sites, indicating that seed production may be limiting. Thus, hydrologic restoration targets should consider optimization of salinity levels and dynamics that promote SAV early life stage survival and sexual reproduction to restore critical coastal habitats in the Everglades and other highly dynamic estuarine systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta, L.W., M.R. Sabbatini, O.A. Fernàndez, and M.A. Burgos. 1999. Propagule bank and plant emergence of macrophytes in artificial channels of a temperate irrigation area in Argentina. Hydrobiologia 415: 1–5.

    Article  Google Scholar 

  • Bartlett, M.S. 1966. An introduction to stochastic processes with special reference to methods and applications, 2nd ed. Cambridge: Cambridge University Press.

    Google Scholar 

  • Björk, M., F. Short, E. Mcleod, and S. Beer. 2008. Managing seagrasses for resilience to climate change. Gland, Switzerland: IUCN. 56pp.

    Google Scholar 

  • Bloomfield, P. 1976. Fourier analysis of time series: An introduction. New York: Wiley.

    Google Scholar 

  • Bonis, A., J. Lepart, and P. Grillas. 1995. Seed bank dynamics and coexistence of annual macrophytes in a temporary and variable habitat. Oikos 74: 81–92.

    Article  Google Scholar 

  • Brock, M.A. 1981. Accumulation of proline in a submerged aquatic halophyte, Ruppia L. Oecologia 51: 217–219.

  • Capon, S.J., and M.S. Brock. 2006. Flooding, soil seed bank dynamics and vegetation resilience of a hydrologically variable desert floodplain. Freshwater Biology 51: 206–223.

    Article  Google Scholar 

  • Caswell, H. 2000. Prospective and retrospective perturbation analyses: their roles in conservation biology. Ecology 81: 619–627.

    Article  Google Scholar 

  • Chesson, P.L., and N. Huntly. 1997. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. American Naturalist 150: 519–553.

    Article  CAS  Google Scholar 

  • Cho, H.J., and M.A. Poirrier. 2005. Response of submersed aquatic vegetation (SAV) to the 1997-2001 El Niño Southern Oscillation shifts in Lake Pontchartrain, Louisiana. Estuaries 28: 215–225.

    Article  Google Scholar 

  • Cho, H.J., and Y.L. Sanders. 2009. Note on organic dormancy of estuarine Ruppia maritima L. seeds. Hydrobiologia 617: 197–201.

    Article  Google Scholar 

  • Cho, H.J., P. Biber, and C. Nica. 2009. The rise of Ruppia in seagrass beds: changes in coastal environment and research needs. In Handbook on environmental quality, ed. E.K. Drury and T.S. Pridgen, 1–15. Hauppaugue, NY: Nova Science Publishers, Inc.

    Google Scholar 

  • Combroux, I.C.S., and G. Bornette. 2004. Propagule banks and regenerative strategies of aquatic plants. Journal of Vegetation Science 15: 113–120.

    Article  Google Scholar 

  • Costa, C.S., and U. Seeliger. 1989. Vertical distribution and resource allocation of Ruppia maritima L. in a southern Brazilian estuary. Aquatic Botany 33: 123–129.

    Article  Google Scholar 

  • Dawes, C.J., and J.M. Lawrence. 1979. Effects of blade removal on the proximate composition of the rhizome of the seagrass Thalassia testudinum Banks ex König. Aquatic Botany 7: 255–266.

    Article  Google Scholar 

  • Dawes, C.J., M. Chan, R. Chinn, E.W. Koch, A. Lazar, and D. Tomasko. 1987. Proximate composition, photosynthetic and respiratory responses of the seagrass Halophila engelmannii from Florida. Aquatic Botany 27: 195–201.

    Article  CAS  Google Scholar 

  • Doering, P.H., and R.H. Chamberlain. 2000. Experimental studies on the salinity tolerance of turtle grass, Thalassia testudinum. In Seagrasses: Monitoring, ecology, phyisology, and management, ed. S.A. Bortone, 81–98. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Easterling, D.R., J. Meehl, C. Parmesan, S. Chagnon, T.R. Karl, and L.O. Mearns. 2000. Climate extremes: observations, modeling, and impacts. Science 289: 2068–2074.

    Article  CAS  Google Scholar 

  • Fenner, M. 1987. Seedlings. New Phytologist 106(s1): 35–47.

    Google Scholar 

  • Fong, P., and M.A. Harwell. 1994. Modeling seagrass communities in tropical and subtropical bays and estuaries: A mathematical model synthesis of current hypotheses. Bulletin of Marine Science 54: 757–781.

    Google Scholar 

  • Fourqurean, J.W., and J.C. Zieman. 2002. Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of availability of nitrogen and phosphorus in the Florida Keys USA. Biogeochemistry 61: 229–245.

    Article  CAS  Google Scholar 

  • Fourqurean, J.W., J.C. Zieman, and V.N. Powell. 1992a. Phosphorus limitation of primary production in Florida Bay: Evidence from C:N:P ratios of the dominant seagrass Thalassia testudinum. Limnology and Oceanography 37: 162–171.

    Article  CAS  Google Scholar 

  • Fourqurean, J.W., J.C. Zieman, and G.V.N. Powell. 1992b. Relationships between porewater nutrients and seagrasses in a subtropical carbonate environment. Marine Biology 114: 57–65.

    CAS  Google Scholar 

  • Fourqurean, J.W., M.J. Durako, M.O. Hall, and L.N. Hefty. 2002. Seagrass distribution in South Florida: A multi-agency coordinated monitoring program. In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook, ed. J.W. Porter and K.G. Porter, 497–522. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Fourqurean, J.W., J.N. Boyer, M.J. Durako, L.N. Hefty, and B.J. Peterson. 2003. Forecasting responses of seagrass distributions to changing water quality using monitoring data. Ecological Applications 13: 474–489.

    Article  Google Scholar 

  • Franco, M., and J. Silvertown. 1990. Plant demography: what do we know? Evolutionary Trends in Plants 4: 74–76.

    Google Scholar 

  • Franco, M., and J. Silvertown. 1996. Life history variation in plants: An exploration of the fast-slow continuum hypothesis. Philosophical Transactions of the Royal Society of London Series B 351: 1341–1348.

    Article  Google Scholar 

  • Frankovich, T.A., D. Morrison, and J.W. Fourqurean. 2011. Benthic macrophyte distribution and abundance in estuarine mangrove lakes and estuaries: relationships to environmental variables. Estuaries and Coasts 34: 20–31.

    Article  CAS  Google Scholar 

  • Frankovich, T.A., J.G. Barr, D. Morrison, and J.W. Fourqurean. 2012. Differing temporal patterns of Chara hornemannii cover correlate to alternate regimes of phytoplankton and submerged aquatic-vegetation dominance. Marine and Freshwater Research 63: 1005–1014.

    Article  Google Scholar 

  • Hare, P.D., W.A. Cress, and J. van Staden. 1999. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. Journal of Experimental Botany 50: 413–434.

    CAS  Google Scholar 

  • Harley, C.D.G., A.R. Hughes, K.M. Hultgren, B.G. Miner, C.J.B. Sorte, C.S. Thornber, L.F. Rodriguez, L. Tomanek, and S.L. Williams. 2006. The impacts of climate change in coastal marine systems. Ecology Letters 9: 228–241.

    Article  Google Scholar 

  • Harper, J.L. 1977. Population biology of plants. London: Academic Press.

    Google Scholar 

  • Hoegh-Guldberg, O., and J.F. Bruno. 2010. The impact of climate change on the world’s marine ecosystems. Science 328: 1523–1528.

    Article  CAS  Google Scholar 

  • Horvitz, C.C., S. Tuljapurkar, and J.B. Pascarella. 2005. Plant-animal interactions in random environments: habitat-stage elasticity, seed predators, and hurricanes. Ecology 86: 3312–3322.

    Article  Google Scholar 

  • Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, D. Xiaosu, K. Maskell, and C.A. Johnson. 2002. Climate change 2001: The scientific basis. In Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson. New York: Cambridge University Press.

    Google Scholar 

  • Hughes, A.R., and J.J. Stachowicz. 2004. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proceedings of the National Academy of Sciences 101: 8998–9002.

  • Johnson, M.R., S.L. Williams, C.H. Lieberman, and A. Solbak. 2003. Changes in the abundance of the seagrasses Zostera marina L. (eelgrass) and Ruppia maritima L. (widgeongrass) in San Diego, California, following an El Niño event. Estuaries 26: 106–115.

    Article  Google Scholar 

  • Kahn, A.E., and M.J. Durako. 2005. The effect of salinity and ammonium on seed germination in Ruppia maritima from Florida Bay. Bulletin of Marine Science 77: 453–458.

    Google Scholar 

  • Kantrud, H.A. 1991. Wigeongrass (Ruppia maritima L.): A literature review. U.S. Fish and Wildlife Service, Fish and Wildlife Research 10. Jamestown, ND: Northern Prairie Wildlife Research Center online: http://www.npwrc.usgs.gov/resource/plants/ruppia/index.htm. Accessed 1 August 2011.

  • Kelble, C.R., E.M. Johns, W.K. Nuttle, T.N. Lee, R.H. Smith, and P.B. Ortner. 2007. Salinity patterns of Florida Bay. Estuarine, Coastal and Shelf Science 71: 318–334.

  • Koch, M.S., S.A. Schopmeyer, C. Kyhn-Hansen, C.J. Madden, and S. Peters. 2007. Tropical seagrass species tolerance to hypersalinity stress. Aquatic Botany 86: 14–24.

    Article  CAS  Google Scholar 

  • La Peyre, M.K., and S. Rowe. 2003. Effects of salinity changes on growth of Ruppia maritima L. Aquatic Botany 77: 235–241.

  • Lazar, A.C., and C. Dawes. 1991. A seasonal study of the seagrass Ruppia maritima L. in Tampa Bay, Florida. Organic constituents and tolerances to salinity and temperature. Botanica Marina 34: 265–269.

    Article  CAS  Google Scholar 

  • Leck, M.A., and M.A. Brock. 2000. Ecological and evolutionary trends in wetlands: evidence from seeds and seed banks in New South Wales, Australia and New Jersey, USA. Plant Species Biology 15: 97–112.

    Article  Google Scholar 

  • Leck, M.A., and R.L. Simpson. 1995. Ten-year seed bank and vegetation dynamics of a tidal freshwater marsh. American Journal of Botany 82: 1547–1557.

    Article  Google Scholar 

  • Lefkovitch, L.P. 1965. The study of population growth in organisms grouped by stages. Biometrics 21: 1–18.

    Article  Google Scholar 

  • Lirman, D., and W.P. Cropper Jr. 2003. The influence of salinity on seagrass growth, survivorship, and distribution within Biscayne Bay, Florida: Field, experimental, and modeling studies. Estuaries 26: 131–141.

    Article  Google Scholar 

  • Lirman, D., G. Deangelo, J. Serafy, A. Hazra, D. Smith Hazra, J. Herlan, J. Luo, S. Bellmund, J. Wang, and R. Clausing. 2008. Seasonal changes in the abundance and distribution of submerged aquatic vegetation in a highly managed coastal lagoon. Hydrobiologia 596: 105–120.

    Article  Google Scholar 

  • Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B.C. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806–1809.

    Article  CAS  Google Scholar 

  • MacLeod, A.I., and K.W. Hipel. 1995. Exploratory spectral analysis of hydrological time series. Stochastic Hydrology and Hydraulics 9: 171–205.

    Article  Google Scholar 

  • McMillan, C. 1985. The seed reserve for Halodule wrightii, Syringodium filiforme and Ruppia maritima in Laguna Madre, Texas. Contributions in Marine Science 28: 141–149.

    Google Scholar 

  • Menges, E.S. 2000. Population viability analyses in plants: challenges and opportunities. Trends in Ecology and Evolution 15: 51–56.

    Article  Google Scholar 

  • Moles, A.T., and M. Westoby. 2004. Seedling survival and seed size: a synthesis of the literature. Journal of Ecology 92: 372–383.

    Article  Google Scholar 

  • Montague, C.L., and J.A. Ley. 1993. A possible effect of salinity fluctuation on abundance of benthic vegetation and associated fauna in Northeastern Florida Bay. Estuaries 16: 703–717.

    Article  CAS  Google Scholar 

  • Murphy, L.R., S.T. Kinsey, and M.J. Durako. 2003. Physiological effects of short-term salinity changes on Ruppia maritima. Aquatic Botany 75: 293–309.

    Article  Google Scholar 

  • Nielsen, O.I., M.S. Koch, H.S. Jensen, and C.J. Madden. 2006. Thalassia testudinum phosphate uptake kinetics at low in situ concentrations using a 33P radioisotope technique. Limnology and Oceanography 51: 208–217.

    Article  CAS  Google Scholar 

  • Nuttle, W.K., J.W. Fourqurean, B.J. Cosby, J.C. Zieman, and M.B. Robblee. 2000. Influence of net freshwater supply on salinity in Florida Bay. Water Resources Research 36: 1805–1822.

    Article  Google Scholar 

  • Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, F.T. Short, M. Waycott, and S.L. Williams. 2006a. A global crisis for seagrass ecosystems. Biosciences 56: 987–996.

    Article  Google Scholar 

  • Orth, R.J., M.C. Harwell, and G.J. Inglis. 2006b. Ecology of seagrass seeds and dispersal strategies. In Seagrasses: Biology, ecology and conservation, ed. W.D. Larkum, R.J. Orth, and C.M. Duarte, 111–133. The Netherlands: Springer.

    Google Scholar 

  • Powell, G.V.N., W.J. Kenworthy, and J.W. Fourqurean. 1989. Experimental evidence for nutrient limitation of sea-grass growth in a tropical estuary with restricted circulation. Bulletin of Marine Science 44: 324–340.

    Google Scholar 

  • Powell, G.V.N., J.W. Fourqurean, W.J. Kenworthy, and J.C. Zieman. 1991. Bird colonies cause seagrass enrichment in a subtropical estuary: observational and experimental evidence. Estuarine, Coastal and Shelf Science 32: 567–579.

    Article  Google Scholar 

  • Pulliam, H.R. 2000. On the relationship between niche and distribution. Ecology Letters 3: 349–361.

    Article  Google Scholar 

  • Raven, J.A. 1985. Tansley Review No. 2. Regulation of pH and generation of osmolarity in vascular plants: A cost-benefit analysis in relation to efficiency and use of energy, nitrogen and water. New Phytologist 101: 25–77.

    Article  CAS  Google Scholar 

  • Reusch, T.B.H., A. Ehlers, A. Hammerli, and B. Worm. 2005. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences 102: 2826–2831.

  • Reusch, T.B.H., and A.R. Hughes. 2006. The emerging role of genetic diversity for ecosystem functioning: estuarine macrophytes as models. Estuaries and Coasts 29: 159–164.

  • Seeliger, U., C. Cordazzo, and E.W. Koch. 1984. Germination and algae-free laboratory culture of wigeon grass, Ruppia maritima. Estuaries 7: 176–178.

    Article  Google Scholar 

  • Short, F.T., and H.A. Neckles. 1999. The effect of global climate change on seagrasses. Aquatic Botany 63: 169–196.

    Article  Google Scholar 

  • Short, F.T., and S. Wyllie-Escheverria. 1996. Natural and human-induced disturbance of seagrasses. Environmental Conservation 23: 17–27.

    Article  Google Scholar 

  • Stebbins, G.L. 1971. Adaptive radiation of reproductive characteristics in angiosperms, II: Seeds and seedlings. Annual Review of Ecology and Systematics 2: 237–260.

    Article  Google Scholar 

  • Stewart, G.R., and J.A. Lee. 1974. The role of proline accumulation in halophytes. Planta 120: 279–289.

    Article  CAS  Google Scholar 

  • Strazisar, T., M.S. Koch, E. Dutra, and C.J. Madden. 2013a. Viability of the Ruppia maritima L. seed bank across the Everglades-Florida Bay Ecotone. Aquatic Botany 111: 26–34.

    Article  Google Scholar 

  • Strazisar, T., M.S. Koch, C.J. Madden, J. Filina, P.U. Lara, and A. Mattair. 2013b. Salinity effects on Ruppia maritima L. seed germination and seedling survival at the Everglades-Florida Bay ecotone. Journal of Experimental Marine Biology and Ecology 445: 129–139.

    Article  Google Scholar 

  • Tabb, D.C., D.L. Dubrow, and R.B. Manning. 1962. The ecology of Northern Florida Bay and adjacent estuaries. Florida Board of Conservation Technical Series 39: 1–81.

    Google Scholar 

  • Thayer, G.W., A.B. Powell, and D.E. Hoss. 1999. Composition of larval, juvenile, and small adult fishes relative to changes in environmental conditions in Florida Bay. Estuaries 22: 518–533.

  • Thursby, G.B. 1984. Root-exuded oxygen in the aquatic angiosperm Ruppia maritima. Marine Ecology Progress Series 16: 303–305.

    Article  Google Scholar 

  • Turnbull, L.A., M.J. Crawley, and M. Rees. 2000. Are plant populations seed-limited? A review of seed sowing experiments. Oikos 88: 225–238.

    Article  Google Scholar 

  • Underwood, A.J. 2000. Experimental ecology of rocky intertidal habitats: what are we learning? Journal of Experimental Marine Biology and Ecology 250: 51–76.

  • Van Vierssen, W., C.M. Van Kessel, and J.R. Van der Zee. 1984. On the germination of Ruppia taxa in western Europe. Aquatic Botany 19: 381–393.

  • Venable, D.L., C.E. Pake, and A. Caprio. 1993. Diversity and coexistence of Sonoran Desert winter annuals. Plant Species Biology 8: 207–216.

    Article  Google Scholar 

  • Verhoeven, J.T.A. 1979. The ecology of Ruppia-dominated communities in Western Europe. I. Distribution of Ruppia representatives in relation to their autecology. Aquatic Botany 6: 197–268.

    Article  CAS  Google Scholar 

  • Wittmann, K.J., and J.A. Ott. 1982. Effects of cropping on the Mediterranean seagrass Posidonica oceanica (L.) Delile. Marine Ecology 3: 151–159.

    Article  Google Scholar 

  • Zieman, J.C., J.W. Fourqurean, and R.L. Iverson. 1989. The distribution, abundance and productivity of seagrasses in Florida Bay. Bulletin of Marine Science 44: 292–311.

    Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by the South Florida Water Management District contract number 4600001483 and a fellowship supported by the Department of Interior (Everglades National Park) to T. Strazisar. We are extremely grateful to National Audubon (Tavernier Science Center, FL), particularly to Jerome Lorenz, Ph.D. and Peter Frezza, for sharing their long-term monitoring data with us. In addition, we would like to thank H. Baki Iz, Ph.D. for assistance with harmonic analyses and Joshua Filina, Greg Ward, Kevin Cunniff, and Thomas A. Frankovich, Ph.D. for field assistance and Atalya Peritz for laboratory assistance on the project. We also thank two anonymous reviewers for insightful comments that significantly improved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa Strazisar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strazisar, T., Koch, M.S. & Madden, C.J. Seagrass (Ruppia maritima L.) Life History Transitions in Response to Salinity Dynamics Along the Everglades-Florida Bay Ecotone. Estuaries and Coasts 38, 337–352 (2015). https://doi.org/10.1007/s12237-014-9807-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9807-4

Keywords

Navigation