Skip to main content

Advertisement

Log in

A Hydrological Budget (2002–2008) for a Large Subtropical Wetland Ecosystem Indicates Marine Groundwater Discharge Accompanies Diminished Freshwater Flow

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Water budget parameters are estimated for Shark River Slough (SRS), the main drainage within Everglades National Park (ENP) from 2002 to 2008. Inputs to the water budget include surface water inflows and precipitation while outputs consist of evapotranspiration, discharge to the Gulf of Mexico and seepage losses due to municipal wellfield extraction. The daily change in volume of SRS is equated to the difference between input and outputs yielding a residual term consisting of component errors and net groundwater exchange. Results predict significant net groundwater discharge to the SRS peaking in June and positively correlated with surface water salinity at the mangrove ecotone, lagging by 1 month. Precipitation, the largest input to the SRS, is offset by ET (the largest output); thereby highlighting the importance of increasing fresh water inflows into ENP for maintaining conditions in terrestrial, estuarine, and marine ecosystems of South Florida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abtew, W. 1996. Evaporation measurements and Modeling for three wetland systems in South Florida. Journal of the American Water Resources Association 32(3): 465–473.

    Article  Google Scholar 

  • Abtew, W. 2005a. Evapotranspiration in the Everglades: Comparison of Bowen Ratio Measurements and Model Estimations. In ASAE 2005 Meeting Presentation Paper no. 052188.

  • Abtew, W., S. Huebner, and V. Ciuca. 2005. Hydrology of the Everglades protected area. 2004 Everglades consolidated report chapter 5. West Palm Beach: South Florida Water Management District.

    Google Scholar 

  • Allen, R.G., L.A. Pereira, D. Raas, and M. Smith 1998. FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization (FAO), Rome, Italy.

  • Barr, J.G., V. Engel, J.D. Fuentes, J.C. Zieman, T.L. O’Halloran, T.J. Smith III, and G.H. Anderson. 2010. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park. Journal of Geophysical Research 115(G02020): 14.

    Google Scholar 

  • Becht, R., and D.M. Harper. 2002. Towards an understanding of human impact upon the hydrology of Lake Naivasha, Kenya. Hydrobiologia 488: 1–11.

    Article  Google Scholar 

  • Bedient, P.B., W.C. Huber, and B.E. Vieux. 2008. Hydrology and floodplain analysis, 4th ed, 795. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Bidlake, W.R., W.M. Woodham, and M.A. Lopez. 1996. Evapotranspiration from areas of native vegetation in west-central Florida. USGS Water Supply Paper 2430: 35.

    Google Scholar 

  • Butchart, H.M.S., et al. 2010. Global biodiversity: Indicators of declines. Science. doi:10.1126/science.1187512.

  • Camacho-B, S.E., A.E. Hall, and M.R. Kaufmann. 1974. Efficiency and regulation of water transport in some woody and herbaceous species. Plant Physiology 54: 169–172.

    Article  CAS  Google Scholar 

  • Carter, V. 1986. An overview of the hydrological concerns related to wetlands in the United States. Canadian Journal of Botany 64: 364–374.

    Article  Google Scholar 

  • Castaneda, E. 2010. Landscape patterns of community structure, biomass and net primary productivity of mangrove forests in the florida coastal Everglades as a function of resources, regulators, hydroperiod,and hurricane disturbance. Ph.D. dissertation, Louisiana Agricultural and Mechanical University. p 765.

  • Childers, D.L., J.N. Boyer, S.E. Davis, C.J. Madden, D.T. Rudnick, and F.H. Sklar. 2006. Relating precipitation and water management to nutrient concentration patterns in the oligotrophic “upside down” estuaries of the Florida Everglades. Limnology and Oceanography 61(1): 602–616.

    Article  Google Scholar 

  • Dadaser-Celik, F., H.G. Stefan, and P.L. Brezonik. 2006. Dynamic hydrologic model of the Ortuluakar marsh in Turkey. Wetlands 26(4): 1089–1102.

    Article  Google Scholar 

  • DeAngelis, D.L., J.C. Trexler, C. Cosner, A. Obaza, and F. Jopp. 2010. Fish population dynamics in a seasonally varying wetland. Ecological Modelling 221(8): 1131–1137.

    Google Scholar 

  • Donders, T.H., P.M. Gorissen, F. Sangiorgi, H. Cremer, F. Wagner-Cremer, and V. McGee. 2008. “Three- hundred-year hydrological changes in a subtropical estuary, Rookery Bay (Florida): Human impact versus natural variability”. Geochemistry, Geophysics, Geosystems 9(Q07V06): 15.

    Google Scholar 

  • Duever, M.J., J.E. Carlson, J.F. Meeder, L.C. Duever, L.H. Gunderson, L.A. Riopelle, T.R. Alexander, R.F. Myers, and D.P. Spangler. 1986. The Big Cypress National Preserve. National Audubon Society Research Report pp 8.1225.

  • Ebisuzaki, W. 1997. A method to estimate the statistical significance of a correlation when data are serially correlated. Journal of Climatology 10: 2147–2153.

    Article  Google Scholar 

  • Ewe, S.M.L., L.D.L. Sternberg, and D.E. Busch. 1999. Water-use patterns of woody species in pineland and hammock communities of South Florida. Forest Ecology and Management 118(1–3): 139–148.

    Google Scholar 

  • Favero, L., E. Mattiuzzo, and D. Franco. 2007. Practical results of a water budget estimation for a constructed wetland. Wetlands 27(2): 230–239.

    Google Scholar 

  • Fitterman, D.V, Deszcz-Pan, M., Stoddard C.E. 1999. Results of time-domain electromagnetic soundings in Everglades National Park, Florida (on CD-ROM), U.S. Geological Survey Open-File Report, pp 99–426.

  • Fitz, C.H., F.H. Sklar, T. Waring, A.A. Voinov, R. Costanza, and T. Maxwell. 2004. Development and Application of the Everglades Landscape Model. In Spatially explicit landscape simulation models, ed. R. Costanza and A.A. Voinov, 143–171. Berlin: Springer.

    Chapter  Google Scholar 

  • Fourqurean, J. 1999. Florida Bay: A history of recent ecological changes. Estuaries and Coasts 22(2): 345–357.

    Google Scholar 

  • German, E.R. 2000. Regional Evaluation of Evapotranspiration in the Everglades. Water Resources Investigations Report no. 4217, United States Geological Survey, Reston, VA, USA.

  • Goes, B.J.M. 1999. Estimate of shallow groundwater recharge in the Hadejika-Nguru wetlands, semi-arid northeastern Nigeria. Hydrogeology Journal 7(3): 294–304.

    Article  Google Scholar 

  • Harvey, J.W., and P.V. McCormick. 2009. Groundwater’s significance to changing hydrology, water chemistry, and biological communities of a floodplain ecosystem, Everglades, South Florida, USA. Hydrogeology Journal 17: 185–201.

    Google Scholar 

  • Hatton, T.J., and R.A. Vertessy. 1990. Transpiration of plantation pinus radiata estimated by the heat pulse method and the Bowen ratio. Hydrological Processes 4(3): 289–298.

    Google Scholar 

  • Huebner, R.S. 2008. Water budget analysis for stormwater treatment area 2, technical publication #103, South Florida Water Management District, West Palm Beach, FL, USA.

  • Koerselman, W. 1989. Groundwater and surface water hydrology of a small groundwater-fed fen. Wetland Ecology and Management 1(1): 31–43.

    Article  Google Scholar 

  • Koerselmann, W., and B. Beltman. 1988. Evapotranspiration from fens in relation to Penman’s potential free water evaporation and pan evaporation. Aquatic Botany 31(3–4): 307–320.

    Article  Google Scholar 

  • Kostner, B. 2001. Evaporation and transpiration from forests in Central Europe: Relevance of patch-level studies for spatial scaling. Meteorology and Atmospheric Physics 76: 69–82.

    Article  Google Scholar 

  • LaBaugh, J.W. 1986. Wetland system studies from a hydrologic perspective. Water Resources Bulletin 22: 1–10.

    Article  Google Scholar 

  • Levesque, V.A. 2004. Water Flow and Nutrient Flux from Five Estuarine Rivers along the southwest coast of Everglades National Park, Florida, 1997–2001. US Geological Survey Scientific Investigations Report 2004–5142. Reston VA, USA. 24 pp.

  • Light, S.S., and J.W. Dineen. 1994. Water control in the everglades: A historical perspective. In Everglades: The ecosystem and its restoration, ed. S.M. Davis and J.C. Ogden, 47–83. Delray Beach: St. Lucie Press.

    Google Scholar 

  • Lott, R.B., and R.J. Hunt. 2001. Estimating evapotranspiration in natural and constructed wetlands. Wetlands 21(4): 621–648.

    Google Scholar 

  • McCarthy, T.S. 2006. Groundwater in the wetlands of the Okavango Delta, Botswana, and its contribution to the structure and function of the ecosystem. Journal of Hydrology 320(3–4): 264–282.

    Article  CAS  Google Scholar 

  • Mitsch, W.J., and J.G. Gosselink. 1993. Wetlands, 2nd ed, 699. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Mitsch, W.J., A. Nahlik, P. Wolski, B. Bernal, L. Zhang, and L. Ramberg. 2010. Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration and methane emissions. Wetland Ecology and Management 18(5): 573–586.

    Article  CAS  Google Scholar 

  • Nemeth, M.S., W.M.Wilcox, and H.M. Solo-Gabriele. 2000. Evaluation of the Use of Reach Transmissivity to Quantify Leakage beneath Levee 31N, Miami-Dade County, Florida. USGS Technical Report 00–4066, Tallahassee, FL, USA. pp 53.

  • Nungesser, M.K., and M.J. Chimney. 2006. A hydrological assessment of the Everglades Nutrient Removal Project, a subtropical constructed wetland in South Florida, USA. Ecological Engineering 4(1): 331–344.

    Article  Google Scholar 

  • Nuttle, W. 1995. Dynamics of groundwater, surface water and salinity related to the mangrove/marsh ecotone. Interannual and multi-year variation in the hydrology of Shark Slough. Report prepared for Global Climate Change Research Program: South Florida Biogeographical Region.

  • Olmsted, I.C., and L.L. Loope. 1984. Plant communities of Everglades National Park. In Environments of south Florida: Present and past II. Coral gables, ed. P.J. Gleason, 167–184. Miami: Miami Geological Society.

    Google Scholar 

  • Price, R.M., P.K. Swart, and J.W. Fourqurean. 2006. Coastal groundwater discharge-an additional source of phosphorus for the oligotrophic wetlands of the Everglades. Hydrobiologia 569: 23–36. doi:10.1007/s10750-006-0120-5.

    Article  CAS  Google Scholar 

  • Priestley, C.H.B., and R.J. Taylor. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review 100(2): 81–92.

    Article  Google Scholar 

  • Ramberg, L., P. Wolski, and M. Krah. 2006. Water balance and infiltration in a seasonal floodplain in the Okavango delta, Botswana. Wetlands 26(3): 677–690.

    Article  Google Scholar 

  • Rawson, H.M., J.E. Begg, and R.G. Woodward. 1977. The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species. Planta 134(1): 5–10.

    Article  CAS  Google Scholar 

  • Rehage, J., and J. Trexler. 2006. Assessing the net effect of anthropogenic disturbance on aquatic communities in wetlands: Community structure relative to distance from canals. Hydrobiologia 569(1): 359–373.

    Google Scholar 

  • Riscassi, A., and R. Schaffranek R. 2004. Flow velocity, Water Temperature and Conductivity in Shark River Slough, Everglades National Park, Florida: June 2002–July 2003. USGS Open File Report 04-1233, USGS, Reston, VA, USA. 64 pp.

  • Rodrıguez-Rodrıguez, M., F. Moral, and J. Benavente. 2007. Hydro-morphological characteristics and hydrogeological functioning of a wetland system: A case study in southern Spain. Environmental Geology 52: 1375–1386.

    Article  Google Scholar 

  • Ropelewski, C.F., and M.S. Halpert. 1986. North-American precipitation and temperature pattern associated with the El Nino Southern Oscillation (ENSO). Monthly Weather Review 114(12): 2352–2362.

    Article  Google Scholar 

  • Ross, M.S., E.E. Gaiser, J.F. Meeder, and M.T. Lewin. 2001. Multi-taxon analysis of the “white zone”, a common ecotonal feature of South Florida coastal wetlands. In The Everglades, Florida Bay and coral reefs of the Florida keys: An ecosystem sourcebook, ed. J.W. Porter and K.G. Porter, 205–238. Boca Raton: CRC.

    Google Scholar 

  • Ruhl, C., and M. Simpson. 2005. Computation of Discharge Using the Index-Velocity method in tidally affected areas. USGS Scientific Investigations Report 2005–5004. USGS.

  • Rushton, B. 1996. Hydrological Budget for a freshwater marsh in Florida. Water Resources Bulletin Vol 32 No 1. American Water Resources Association.

  • Saha, A.K., L.S. Sternberg, and R. Miralles-Wilhelm. 2009. Linking water sources with foliar nutrient status in upland plant communities in the Everglades National Park, USA. Ecohydrology 1(2): 42–54.

    Article  Google Scholar 

  • Saha, A.K., S. Saha, J. Sadle, M.S. Ross, J. Jiang, R.M. Price, L.S.L. Sternberg, and K. Wendelburger. 2011. Sea level rise and south Florida coastal forests. Journal of Climatic Change 107(1–2): 81–108.

    Article  Google Scholar 

  • Shoemaker, W.B., S. Huddleston, C.L. Boudreau, and A.M. O’Reilly. 2008. Sensitivity of wetland saturated hydraulic heads and water budgets to evapotranspiration. Wetlands 28(4): 1040–1047.

    Google Scholar 

  • Shuttleworth, J. 1992. Evaporation. In Handbook of hydrology, ed. D. Maidment, 4.1–4.53. New York: McGraw-Hill.

    Google Scholar 

  • Simard, M., K. Zhang, V.H. Rivera-Monroy, M.S. Ross, P.L. Ruiz, E. Castenada-Moya, R.W. Twilley, and E. Rodriguez. 2006. Mapping height and biomass of mangrove forests in Everglades national park with SRTM elevation data. Photogrammetric Engineering and Remote Sensing 72(3): 299311.

    Google Scholar 

  • Skinner, C., F. Bloetscher, and C.S. Pathak. 2009. Comparison of NEXRAD and rain gauge precipitation measurements in South Florida. Journal of Hydrologic Engineering 14(3): 248–261.

    Google Scholar 

  • Smith III, T.J., J.H. Hudson, M.R. Robblee, G.V.N. Powell, and P.J. Isdale. 1989. Freshwater flow from the Everglades to Florida bay: A historical reconstruction based on fluorescent banding in the coral Solenastrea Bournoni. Bulletin of Marine Science 44(1): 274–282.

    Google Scholar 

  • Sophocleous, M. 2002. Interactions between groundwater and surface water: The state of the science. Hydrogeology Journal 10: 52–76.

    Article  CAS  Google Scholar 

  • Sternberg, L.D.L., S.Y. Teh, S.M.L. Ewe, F.M. Wilhelm, and D.L. DeAngelis. 2007. Competition between hardwood hammocks and mangroves. Ecosystems 10: 648–660.

    Article  Google Scholar 

  • Suleiman, A.A., and G. Hoogenboom. 2007. Comparison of Priestley-Taylor and FAO-56 Penman–Monteith for daily reference evapotranspiration estimation in Georgia. Journal of Irrigation and Drainage Engineering 133(2): 175.

    Article  Google Scholar 

  • Sullivan, P.L., R.M. Price, M.S. Ross, L.J. Scinto, S.L. Stoffella, E. Cline, T.W. Drechel, and F.H. Sklar. 2010. Hydrologic processes of tree islands in the Everglades: Tracking the effects of tree establishment and growth. Hydrogeology Journal. doi:10.1007/s10040-010-0691-0.

  • Sutula, M., J.W. Day, J. Cable, and D. Rudnick. 2001. Hydrological and nutrient budgets of freshwater and estuarine wetlands of Taylor Slough in Southern Everglades, Florida (U.S.A.). Biogeochemistry 56: 287–310.

    Article  Google Scholar 

  • Tardieu, F., and T. Simonneau. 1998. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: Modelling isohydric and anisohydric behaviours. Journal of Experimental Botany 49: 419–432.

    Article  Google Scholar 

  • Thiessen, A.H. 1911. Precipitation averages for large areas. Monthly Weather Review 39: 1082–1089.

    Google Scholar 

  • Turc, L. 1961. Valuation Des Besoins En Eau D’Irrigation, vapotranspiration Potentielle: Formule Climatique Simplifiée Et Mise. Journal Annual Agronomie 12(1): 13–49.

    Google Scholar 

  • Villalobos R. 2010. Water table and nutrient dynamics in neotropical savannas and wetland ecosystems. Ph.D. dissertation, University of Miami.

  • Wang, X., L.O. Sternberg, M.S. Ross, and V.C. Engel. 2010. Linking water use and nutrient accumulation in tree island upland hammock plant communities in the Everglades National Park, USA. Biogeochemistry. doi:10.1007/s10533-010-9492-8.

  • Wanless, H.R., R.W. Parkinson, and L.P. Tedesco. 1994. Sea level control on stability of Everglades wetlands, 199–223. Boca Raton: St. Lucie Press.

    Google Scholar 

  • Yoder, R.E., L.O. Odhiambo, and W.C. Wright. 2005. Evaluation of methods for estimating daily reference crop evapotranspiration at a site in the humid Southeast United states. Applied Engineering in Agriculture 21(2): 197–202.

    Google Scholar 

  • Zapata-Rios, J. 2009. Groundwater/surface water interactions in Taylor Slough –Everglades National Park. Masters thesis in Geosciences, Florida International University, Miami, FL, USA. 98 pp.

  • Zhang, L., and W. Mitsch. 2005. Modelling hydrological processes in created freshwater wetlands: An integrated system approach. Environmental Modeling and Software 20: 935–946.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Florida Coastal Ecosystems Long Term Ecological Research Project (FCE-LTER), United States Geological Survey, Everglades National Park and the South Florida Water Management District for making data available for this analysis. A portion of A. Saha’s, C. Moses and R.M. Price’s time was supported by NSF grant no. DBI-0620409. Dr. Price was also supported by the NASA WaterSCAPES project. This is SERC Contribution #533.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amartya K. Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, A.K., Moses, C.S., Price, R.M. et al. A Hydrological Budget (2002–2008) for a Large Subtropical Wetland Ecosystem Indicates Marine Groundwater Discharge Accompanies Diminished Freshwater Flow. Estuaries and Coasts 35, 459–474 (2012). https://doi.org/10.1007/s12237-011-9454-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-011-9454-y

Keywords

Navigation