Skip to main content

Advertisement

Log in

Improving Transboundary Maps of Potential Natural Vegetation Using Statistical Modeling Based on Environmental Predictors

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

The potential natural vegetation (PNV) is a tool for landscape planning, nature preservation and the assessment of naturalness. It is mostly constructed by the application of expert knowledge. This paper shows the advantages of using a more sophisticated and formalized PNV construction that overlays vegetation types and site factor maps by applying a Bayes model and herewith improving existing PNV maps solely based on expert knowledge. The investigation was conducted in the forest complex of the Bavarian Forest National Park (Germany) and the adjacent Šumava National Park (Czech Republic). The project reached two major results: (1) The existing heterogeneous country-specific databases of natural site conditions and of vegetation types could be adapted to each other to construct a solid scientific basis to deduce a PNV map. The habitat requirements of the occurring harmonized vegetation types can now be quantitatively described in a formalized way. (2) The combination of terrestrial PNV mapping and numerical modeling allows the synthesis of the views of the different experts that generated the maps used for model calibration. However, the modeled map loses the details of the expert-based map that cannot be derived from the underlying site maps. A common modeled PNV map of both national parks covering an area of about 92,000 ha was created. While the former expert-based PNV maps display breaks along the country border, the modeled PNV presents a harmonized view based on the common database of both national parks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. 9111 and 9411 are not EU-habitat type codes in the strict sense; these subtypes of 9110 and 9410 were defined locally.

Abbreviations

PNV:

Potential natural vegetation

BFNP:

Bavarian Forest National Park Germany

ŠNP:

Šumava National Park Czech Republic

EU:

European Union

EPF:

Ecological preference function

DTM:

Digital terrain model

References

  • Binz HR, Wildi O (1988) Das Simulationsmodell MaB-Davos. Schlußbericht Schweiz. MaB-Programm 33. Bundesamt für Naturschutz, Bern

    Google Scholar 

  • Bohn U (1981) Vegetationskarte der Bundesrepublik Deutschland 1:200 000 – Potentielle natürliche Vegetation – Blatt CC 5518 Fulda. Schriftenreihe für Vegetationskunde, Heft 15, Bundesforschungsanstalt für Naturschutz und Landschaftsökologie, Bonn-Bad Godesberg

  • Bohn U, Neuhäusl R (with contributions by Gollub G, Hettwer C, Neuhäuslová Z, Raus Th, Schlüter H, Weber H) (2000–2003) Karte der natürlichen Vegetation Europas / Map of the Natural Vegetation of Europe. Maßstab / Scale 1:2 500 000. Landwirtschaftsverlag, Münster

  • Box EO (1981) Macroclimate and plant forms: An introduction to predictive modelling in phytogeography. Tasks for vegetation science 10, Dr W. Jung, The Hague

  • Braun-Blanquet J (1928) Pflanzensoziologie. Grundzüge der Vegetationskunde. 1. Auflage. Springer Verlag, Berlin

    Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth Inc., Monterey, California

    Google Scholar 

  • Brzeziecki B, Kienast F, Wildi O (1993) A simulated map of the potential natural forest vegetation of Switzerland. J Veg Sci 4:499–508

    Article  Google Scholar 

  • Brzeziecki B, Kienast F, Wildi O (1995) Modelling potential impacts of climate change on the spatial distribution of zonal forest communities in Switzerland. J Veg Sci 6:257–268

    Article  Google Scholar 

  • Carrión JS (2010) The concepts of potential natural vegetation (PNV) and other abstractions (trying to pick up fish with wet hands). J Biogeogr 37:2213–2215

    Article  Google Scholar 

  • Carrión JS, Fernández S (2009) The survival of the ‘natural potential vegetation’ concept (or the power of tradition). J Biogeogr 36:2202–2203

    Article  Google Scholar 

  • Česká geologická služba (2003) GeolINFO – geovědní informace na území ČR (GeolINFO – geological information of the area of the Czech Republic). Česká geologická služba, Praha. Available at: http://nts5.cgu.cz/website/geoinfo/

  • Chatfield C (1995) Model uncertainty, data mining and statistical inference. J Roy Stat Soc Ser A 158:419–466

    Article  Google Scholar 

  • Chiarucci A, Araújo MB, Decocq G, Beierkuhnlein C, Fernández-Palacios JM (2010) The concept of potential natural vegetation: an epitaph? J Veg Sci 21:1172–1178

    Article  Google Scholar 

  • Cliff RD, Ord JK (1981) Spatial processes: Models and applications. Pion Press, London

    Google Scholar 

  • Council of European Communities (1979) Council Directive of 2 April 1979 on the conservation of wild birds (79/409/EEC). Off J Eur Communities L 103: 1-18

    Google Scholar 

  • Council of European Communities (1992) Council Directive 92/43/EEC of 21 May on the conservation of natural habitats and of wild fauna and flora. Off J Eur Communities 35:7–50

    Google Scholar 

  • Ellenberg H (translated by Gordon K. Strutt) (1988) Vegetation ecology of central Europe. Cambridge University Press, Cambridge

  • Elling W, Bauer E, Klemm G, Koch K (1987) Klima und Böden – Waldstandorte. Nationalpark Bayerischer Wald 1. Ed. 2. Bayerisches Staatsministerium für Landwirtschaft und Forsten, Munich

  • European Commision (2007) Interpretation Manual of European Union Habitats – EUR27. European Commission, DG Environment, Nature and Biodiversity, Brussels

    Google Scholar 

  • Ewald J (2007) Ein pflanzensoziologisches Modell der Schattentoleranz von Baumarten in den Bayerischen Alpen. Forum Geobot 3:11–19

    Google Scholar 

  • Faber A (1937) Erläuterungen zum pflanzensoziologischen Kartenblatt des mittleren Neckar- und des Ammertalgebirges. Württembergische Forstdirektion und Württembergische Naturaliensammlung, Stuttgart

    Google Scholar 

  • Farris E, Filibeck G, Marignani M, Rosati L (2010) The power of potential natural vegetation (and of spatial-temporal scale): a response to Carrión & Fernández (2009). J Biogeogr 37:2211–2213

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environm Conservation 24:38–49

    Article  Google Scholar 

  • Fischer HS (1990) Simulating the distribution of plant communities in an alpine landscape. Coenoses 5:37–43

    Google Scholar 

  • Fischer HS (1994) Simulation der räumlichen Verteilung von Pflanzengesellschaften auf der Basis von Standortskarten. Dargestellt am Beispiel des MaB-Testgebiets Davos. Veröff Geobot Inst Rübel, Zürich 122: 1–143

    Google Scholar 

  • Fischer A (2003) Forstliche Vegetationskunde. Eine Einführung in die Geobotanik. Ed. 3. Eugen Ulmer, Stuttgart

  • Gilgen H, Steiger D, Fischer HS (1988) Horizontbestimmung in einem digitalen Geländemodell. Ber & Skripten Geogr Inst ETH Zürich 37: 1–20

    Google Scholar 

  • Grabherr G, Koch G (1993) Wie naturnah ist der österreichische Wald? Österr Forstzeitung 11:57–58

    Google Scholar 

  • Grabherr G, Koch G, Kirchmeir H, Reiter K (1998) Hemerobie österreicher Waldökosysteme. Veröffentlichungen des Österreichischen MaB-Programms 17, Österreichische Akademie der Wissenschaften, Universitätsverlag Wagner, Innsbruck

  • GSPC (2002) Global Strategy for Plant Conservation. The Secretariat of the Convention on Biological Diversity, Botanic Gardens Conservation International, Richmond, Surrey

  • Härdtle W (1995) Potentielle natürliche Vegetation. Überlegungen zum theoretischen Konzept und zur Methode der Kartierung; dargestellt am Gebiet der Topographischen Karte 1623 Owschlag. Dissertation, Universität Kiel, Kiel

  • Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London, New York

    Google Scholar 

  • Hehl S, Lange E (1988) Erstellen und Überprüfen EDV-erzeugter Vegetationskarten. Landschaftsentwicklung und Umweltforschung, Technische Universität Berlin, Berlin

    Google Scholar 

  • Hirzel A, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology 83:2027–2036

    Article  Google Scholar 

  • Huisman J, Olff H, Fresco L (1993) A hierarchical set of models for species response analysis. J Veg Sci 4:37–46

    Article  Google Scholar 

  • Kaiser T, Zacharias D (1999) Die anwendungsorientierte Definition der potentiellen natürlichen Vegetation als Ergebnis der Fachtagung “Die potentielle natürliche Vegetation – Bedeutung eines vegetationskundlichen Konzepts für die Naturschutzpraxis”. NNA-Berichte 12:46–47

    Google Scholar 

  • Kienast F, Brzeziecki B, Wildi O (1991) Simulation der potentiell natürlichen Vegetation der Schweiz. Informationsblatt Forschungsbereich Landschaft 10:3–4

    Google Scholar 

  • Kirchmeier H, Koch G, Grabherr G (1999) Naturnähe im Wald – Methodik und praktische Bedeutung des Hemerobiekonzeptes für die Bewertung von Waldökosystemen. Österreichischer Forstverein, Wien

    Google Scholar 

  • Kleyer M (1998) Individuenbasierte Modellierung von Sukzession pflanzlicher Wuchstypen bei unterschiedlichen Störungsintensitäten und Resourcenangeboten. Verh Ges Ökol 28:175–182

    Google Scholar 

  • Kowarik I (1987) Kritische Anmerkungen zum theoretischen Konzept der potentiellen natürlichen Vegetation mit Anregungen zu einer zeitgemäßen Modifikation. Tuexenia 7:53–67

    Google Scholar 

  • Lindacher R (1997) Anwendung eines geographischen Informationssystems zur Vegetationssimulation am Beispiel des Kartenblatts “Hersbruck”. Naturschutzforschung in Franken 2:93–100

    Google Scholar 

  • Liu H, Wang L, Yang J, Nakagoshi N, Liang C, Wang W, Lv Y (2009) Predictive modeling of the potential natural vegetation pattern in northeast China. Ecol Res 24:1313–1321

    Article  Google Scholar 

  • Loidi J, Del Arco M, de Pérez Paz PL, Asensi A, Díez Garretas B, Costa M et al. (2010) Understanding properly the ‘potential natural vegetation’ concept. J Biogeogr 37:2209–2211

    Article  Google Scholar 

  • LWF (2001) Die neue Karte der natürlichen Waldzusammensetzung Bayerns. LWF-aktuell 31, Bayerische Landesanstalt für Wald und Forstwirtschaft, Freising

  • Mather PM (1987) Computer processing of remotely-sensed images. Wiley, New York

    Google Scholar 

  • Monserud RA, Leemans R (1992) Comparing global vegetation maps with the Kappa statistic. Ecol Modelling 62:275–293

    Article  Google Scholar 

  • Moravec J (1998) Reconstructed natural versus potential natural vegetation in vegetation mapping: A discussion of concepts. Appl Veg Sci 1:173–176

    Article  Google Scholar 

  • Moravec J, Neuhäusl R (1976) Geobotanická mapa ČSR (Geobotanical map of the CSR. Map of reconstructed natural vegetation – 1:1000000). Academia, Praha

  • Neuhäuslová Z (ed) (2001) The map of the potential natural vegetation of the Šumava National Park. Silva Gabreta, Suplementum 1:1–190

  • Oberdorfer E (1982) Vegetationskundliche Karte Feldberg 1:20,000 mit Erläuterungen. Landesanstalt für Umweltschutz Baden-Württemberg, Karlsruhe

    Google Scholar 

  • Oberdorfer E (1992) Süddeutsche Pflanzengesellschaften. Teil IV: Wälder und Gebüsche. Gustav Fischer, Stuttgart

  • Petermann R, Seibert P (1979) Pflanzengesellschaften des Nationalparks Bayerischer Wald. Nationalpark Bayerischer Wald 4. Bayerisches Staatsministerium für Landwirtschaft und Forsten, Munich

    Google Scholar 

  • Remmert H (ed) (1991) The mosaic-cycle concept in ecosystems. Springer Verlag, Berlin

    Google Scholar 

  • Rigling A, Dobbertin M, Bürgi M, Feldmeier-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Zweifel R, Wohlgemuth T (2006) Baumartenwechsel in den Walliser Waldföhrenwäldern. Forum für Wissen 2006:23–33

    Google Scholar 

  • Schröder B (2000) Zwischen Naturschutz und Theoretischer Ökologie: Modelle zur Habitateignung und räumlichen Populationsdynamik für Heuschrecken im Niedermoor. Dissertation, Universität Braunschweig, Braunschweig

  • Seibert P (1968) Übersichtskarte der natürlichen Vegetationsgebiete von Bayern 1:500.000 mit Erläuterungen. Schriftenreihe für Vegetationskunde 3, Bundesanstalt für Vegetationskunde, Naturschutz und Landschaftspflege, Bad Godesberg

  • Steinberg D, Colla P, Martin K (1998) CART – classification and regression trees: Supplementary manual for Windows. Salford Systems, San Diego, California

    Google Scholar 

  • Tichý L (1999) Predictive modeling of the potential natural vegetation pattern in the Podyjí National Park, Czech Republic. Folia Geobot 34: 43–252

    Article  Google Scholar 

  • Tüxen R (1956) Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew Pflanzensoziol (Stolzenau) 13:5–42

    Google Scholar 

  • Walentowski H, Ewald J, Fischer A, Kölling C, Türk W (2004) Handbuch der natürlichen Waldgesellschaften. Ein auf geobotanischer Grundlage entwickelter Leitfaden für die Praxis in Naturschutz und Waldbau. Geobotanica Verlag, Freising

    Google Scholar 

  • Watt AS (1947) Pattern and process in plant community. J Ecol 35:1–22

    Article  Google Scholar 

  • Willner W, Grabherr G (2007) Die Wälder und Gebüsche Österreichs. Elsevier, München

    Google Scholar 

  • Wilson JB, Agnew ADQ (1992) Positive-feedback switches in plant-communities. Advances Ecol Res 23:263–336

    Article  Google Scholar 

  • Winter S, Fischer HS, Fischer A (2010) Relative quantitative reference approach for naturalness assessments of forests. Forest Ecol Managem 259:1624–1632

    Google Scholar 

  • Wisskirchen R, Haeupler H (1998) Standardliste der Farn- und Blütenpflanzen Deutschlands. Ulmer, Stuttgart

    Google Scholar 

  • Zerbe S (1997) Stellt die potentielle natürliche Vegetation (PNV) eine sinnvolle Zielvorstellung für den naturnahen Waldbau dar? Forstwiss Centralbl 116:1–15

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the Bavarian State Ministry for Environment, Health and Consumer Protection (Bayerisches Staatsministerium für Umwelt, Gesundheit und Verbraucherschutz StMUGV). As an InterregIIIa-Projekt it was financially supported by the EU. We are grateful to the Bavarian Forest National Park Administration and the Šumava National Park Administration for their support and stimulating discussions. We thank Jörg Ewald and two anonymous reviewers for valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagen S. Fischer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 6.12 MB)

ESM 2

(PDF 4.58 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, H.S., Winter, S., Lohberger, E. et al. Improving Transboundary Maps of Potential Natural Vegetation Using Statistical Modeling Based on Environmental Predictors. Folia Geobot 48, 115–135 (2013). https://doi.org/10.1007/s12224-012-9150-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-012-9150-0

Keywords

Plant nomenclature

Navigation