Fibers and Polymers

, Volume 15, Issue 7, pp 1539–1547

Investigation and modeling of air permeability of Cotton/Polyester blended double layer interlock knitted fabrics

  • Ali Afzal
  • Tanveer Hussain
  • Mumtaz Hassan Malik
  • Abher Rasheed
  • Sheraz Ahmad
  • Abdul Basit
  • Ahsan Nazir
Article

DOI: 10.1007/s12221-014-1539-3

Cite this article as:
Afzal, A., Hussain, T., Malik, M.H. et al. Fibers Polym (2014) 15: 1539. doi:10.1007/s12221-014-1539-3

Abstract

The aim of this study was to analyze and model the effect of knitting parameters on the air permeability of Cotton/Polyester double layer interlock knitted fabrics. Fabric samples of areal densities ranging from 315–488 g/m2 were knitted using yarns of three different cotton/polyester blends, each of two different linear densities by systematically varying knitting loop lengths for achieving different cover factors. It was found that by changing the polyester content in the inner and outer fabric layer from 52 to 65 % in the double layer knitted fabric did not have statistically significant effect on the fabric air permeability. Air permeability sharply increased with increase in knitting loop length owing to decrease in fabric areal density. Decrease in yarn linear density (tex) resulted in increase in air permeability due to decrease in areal density as well as the fabric thickness. It was concluded that response surface regression modeling could adequately model the effect of knitting parameters on the double layer knitted fabric air permeability. The model was validated by unseen data set and it was found that the actual and predicted values were in good agreement with each other with less than 10 % absolute error. Sensitivity analysis was also performed to find out the relative contribution of each input parameter on the air permeability of the double layer interlock knitted fabrics.

Keywords

Air permeability Response surface regression Modelling Double layer interlock knitted fabric Cotton/polyester 

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ali Afzal
    • 1
  • Tanveer Hussain
    • 2
  • Mumtaz Hassan Malik
    • 3
  • Abher Rasheed
    • 4
  • Sheraz Ahmad
    • 1
  • Abdul Basit
    • 1
  • Ahsan Nazir
    • 2
  1. 1.Department of Materials and TestingNational Textile UniversityFaisalabadPakistan
  2. 2.Department of Textile ProcessingNational Textile UniversityFaisalabadPakistan
  3. 3.Department of Yarn ManufacturingNational Textile UniversityFaisalabadPakistan
  4. 4.Department of Garment ManufacturingNational Textile UniversityFaisalabadPakistan

Personalised recommendations