, Volume 12, Issue 7, pp 904-910
Date: 03 Nov 2011

Conductive polymer-coated threads as electrical interconnects in e-textiles

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

An organic polymer electrical interconnect is demonstrated. The ionomer mixture poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS; 1:2.5, w:w) was cast onto silk fibers from a 50:50 (v:v) ethylene glycol solution by a dip-coating process. Dynamic mechanical analysis (DMA) results show that Young’s modulus and mechanical strength are maintained during the coating process from acidic solution (pH ∼1). DMA dynamic temperature scans reveal two new thermal transitions once PEDOT:PSS is applied to the silk fiber, and they are assigned to the glass transition temperature (59 °C) and melting point (146 °C) of the ionomer pair. Electrical conductivities of 8.5 S/cm were achieved with four cycles of the dip-coating process, only 10x less than Ag-coated thread control samples. SEM imaging of the PEDOT:PSS-coated fibers show slight texturing to the fibers due to the coating, as well as significant charging in the uncoated samples when compared to PEDOT:PSS-coated samples. The conductive fibers fabricated by this process were successfully applied as electrical interconnects in flexible, fully functional 555 timer circuits stitched into fabric substrates.