, Volume 11, Issue 4, pp 572-579
Date: 05 Sep 2010

Equilibrium and kinetic modeling of the adsorption of indigo carmine onto silk

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Quantitative adsorption kinetic and equilibrium parameters for indigo carmine dyeing of silk were studied using UV-visible absorption spectroscopy. The effect of initial dye concentration, contact time, pH, material to liquor ratio (MLR), and temperature were determined to find the optimal conditions for adsorption. The mechanism of adsorption of indigo carmine dyeing onto silk was investigated using the pseudo first-order and pseudo second-order kinetic models. The adsorption kinetics was found to follow a pseudo-second-order kinetic model with an activation energy (E a) of 51.06 kJ/mol. The equilibrium adsorption data of indigo carmine dye on silk were analyzed by the Langmuir and Freundlich models. The results indicate that the Langmuir model provides the best correlation. Adsorption isotherms were also used to obtain thermodynamic parameters such as free energy (ΔG o), enthalpy (ΔH o), and entropy (ΔS o) of adsorption. The negative values of ΔG o and ΔH o indicate the overall adsorption process is a spontaneous and exothermic one.