Skip to main content
Log in

The Anthropocene: a comparison with the Ordovician–Silurian boundary

Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Analysis and definition of the Anthropocene as a potential formal unit within the Geological Time Scale necessitates overt comparison of present day, geologically significant environmental changes with geologically earlier perturbations. Previous comparisons have focused on the glacial-interglacial changes of the Quaternary and the ‘hyperthermal’ events such as the Toarcian and Paleocene–Eocene thermal maximum, the Pliocene, and more recently the Precambrian–Cambrian boundary, though all these include significant differences from, as well as similarities with, the contemporary phenomenon. We here examine another geological boundary that in some respects bears a closer resemblance to the Anthropocene: the Ordovician–Silurian boundary. This major warming event starts from a global icehouse state, unlike the Meso-Cenozoic hyperthermals, and so includes a rapid, marked deglacial sea level rise associated with increased marine anoxia, as forecast for the near-future Earth. Both the deglaciation and prior glacial inception are linked with mass extinction events on a scale likely comparable with the ongoing event. In defining the Ordovician–Silurian boundary, it is notable that the boundary event selected is environmentally negligible by comparison with the major Earth system changes taking place around this level—the appearance and wide dispersal of a couple of distinctive graptolite species. Similar utilitarian rationale might be employed in seeking an Anthropocene boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Allen MR, Frame DJ, Hintingford C, Jones D, Lowe J, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions: towards the trillionth tonne. Nature 458:1163–1166

    Article  CAS  Google Scholar 

  • Al-Rousan S, Pätzold J, Al-Moghrabi S, Wefer G (2004) Invasion of anthropogenic CO2 recorded in planktonic foraminifera from the northern Gulf of Aquaba. Int J Earth Sci 93:1066–1076. doi:10.1007/s00531-004-0433-4

    Article  CAS  Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental T, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    Article  CAS  Google Scholar 

  • Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, Martinez ND, Mooers A, Roopnarine P, Vermeeij G, Williams JW, Gillespie R, Kitzes J, Marshall C, Matzke N, Mindell DP, Revilla R, Smith AB (2012) Approaching a state-shift in the biosphere. Nature 486:52–56

    Article  CAS  Google Scholar 

  • Beerling DJ, Royer DL (2011) Convergent CO2 history. Nature Geosci 4:418–420

    Article  CAS  Google Scholar 

  • Berry EW (1925) The term psychozoic. Science 44:16

    Google Scholar 

  • Blanchon P, Shaw J (1995) Reef drowning during the last glaciation: evidence for catastrophic sea-level rise and ice-sheet collapse. Geology 23:4–8

    Article  Google Scholar 

  • Bowen GJ, Zachos JC (2010) Rapid carbon sequestration at the termination of the Paleocene-Eocene thermal maximum. Nature Geosci 3:866–869

    Article  CAS  Google Scholar 

  • Brenchley PJ, Marshall JD, Carden GAF et al (1994) Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology 22:295–298

    Article  Google Scholar 

  • Brenchley PJ, Marshall JD, Underwood CJ (2001) Do all mass extinctions represent an ecological crisis? Evidence from the Late Ordovician. Geol J 36:329–340

    Article  Google Scholar 

  • Broecker WS (1987) How to build a habitable planet. Eldigio Press, New York, p 291

    Google Scholar 

  • Butterfield NJ (2011) Animals and the invention of the phanerozoic Earth system. Trends in Evol Ecol 26:81–88

    Article  Google Scholar 

  • Cohen AS, Coe AL, Harding SM, Schwark L (2004) Osmium isotope evidence for the regulation of atmospheric CO2. Geology 32:157–160

    Article  CAS  Google Scholar 

  • Cohen AS, Coe AL, Kemp DB (2007) The Late Palaeocene-early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their time scales, associated environmental changes, causes and consequences. J Geol Soc London 164:1093–1108

    Article  CAS  Google Scholar 

  • Crutzen PJ (2002) Geology of mankind. Nature 415:23

    Article  CAS  Google Scholar 

  • Crutzen PJ, Stoermer EF (2000) The ‘Anthropocene’. Global Change Newsl 41:17–18

    Google Scholar 

  • Cui Y, Kump LR, Ridgwell AJ, Charles AJ, Junium CK, Diefendorf AK, Freeman KH, Urban NM, Harding IC (2011) Slow release of fossil carbon during the Paleocene-Eocene thermal maximum. Nature Geosci 4:481–485

    Article  CAS  Google Scholar 

  • Darwin C (1859) The origin of species

  • Davies JR, Fletcher CJN, Waters RA, Wilson D, Woodhall DG, Zalasiewicz JA (1997) Geology of the country around Llanilar and Rhayader. Mem Br Geol Surv, Sheets 178 and 179 (England and Wales), xii + 267 pp

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  CAS  Google Scholar 

  • Dowsett HJ, Robinson M, Haywood A, Salzmann U, Hill D, Sohl L, Chandler M, Williams M, Foley K, Stoll D (2010) The PRISM 3D paleoenvironmental reconstruction. Stratigraphy 7:123–139

    Google Scholar 

  • Ellis EC (2011) Anthropogenic transformation of the terrestrial biosphere. Phil Trans Roy Soc A369:1010–1035

    Article  Google Scholar 

  • EPICA community members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628

    Article  Google Scholar 

  • Fortey R (2000) Olenid trilobites: the oldest known chemoautotrophic symbionts? PNAS 97:6574–6578

    Article  CAS  Google Scholar 

  • Gabbott SE, Zalasiewicz J, Aldridge RJ, Theron JN (2010) Eolian input into the Late Ordovician post-glacial Soom Shale, South Africa. Geology 38:1103–1106

    Article  Google Scholar 

  • Gibbard PL, Walker MJC (2013) The term ‘Anthropocene’ in the context of formal geological classification. In: Waters CW, Zalasiewicz JA, Williams M, Ellis M, Snelling A (eds) A stratigraphical basis for the Anthropocene. Geol Soc London Spec Publ, 395. doi:10.1144/SP395.1

  • Hammarlund EU, Dahl TW, Harper DAT, Bond DPG, Nielsen AT, Bjerum CJ, Schovsbo NH, Schönlaub HP, Zalasiewicz JA, Canfield DE (2012) A sulfidic driver for the end-Ordovician mass extinction. Earth Planetary Sci Lett 331–332:128–139

    Article  Google Scholar 

  • Haywood AM, Ridgwell A, Lunt DJ, Pound DJ, Dowsett HJ, Dolan AM, Francis JE, Williams M (2011) Are there pre-Quaternary analogues for future global warming? Phil Trans Roy Soc A369:933–956

    Article  Google Scholar 

  • Huber M, Knutti R (2011) Anthropogenic and natural warming inferred from changes in Earth’s energy balance. Nature Geosci 5:31–36

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: synthesis report. Summary for policy makers. Available at: http://www.ipcc.ch/SPM2feb07.pdf

  • Jenkyns HC (1988) The Early Toarcian (Jurassic) Anoxic Event: stratigraphic, sedimentary and geochemical evidence. Am J Sci 288:101–151

    Article  CAS  Google Scholar 

  • Kolbert E (2011) Enter the age of man. Nat Geog 219(3):60–85

    Google Scholar 

  • Koren TN (1987) Graptolite dynamics in Ordovician and Silurian time. Bull Geol Soc Denmark 35:149–159

    Google Scholar 

  • Kump L, Bralower T, Ridgewell A (2009) Ocean acidification in deep time. Oceanography 22:94–107

    Article  Google Scholar 

  • Kürschner WM, van der Burgh J, Visscher H, Dilcher DJ (1996) Oak leaves as biosensors of late Neogene and early Pleistocene palaeoatmospheric CO2 concentrations. Mar Micropal 29:299–331

    Article  Google Scholar 

  • Lapworth C (1878) The Moffat series. Q J Geol Soc London 34:240–346

    Article  Google Scholar 

  • Letcher TP (ed) (2009) Climate and global change: observed impacts on planet Earth. Elsevier, New York

    Google Scholar 

  • Liesecki L, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003. doi:10.1029/2004PA001071

    Google Scholar 

  • Marsh GP (1878) (reprinted 1965) The Earth as modified by human action. Belknap Press, Harvard University Press

  • Melchin MJ, Williams SH (2000) A restudy of the akidograptine graptolites from Dob’s Linn and a proposed redefined zonation of the Silurian Stratotype. In: Cockle P, Wilson GA, Brock GA, Engerbretsen MJ, Simpson A (eds), Palaeontology Down-under 2000, 11th 15th July 2000, Orange, NSW, Geological Society of Australia, Abstracts, pp 61e63

  • Melchin MJ, Sadler PM, Cramer BD (2012) The silurian Period. Chapter 21 (pp. 526-558). In: Gradstein F, Ogg G, Schmitz M, Ogg G (eds) A Geological Time Scale 2012. Elsevier, pp 1144

  • Morton O (2011) A man-made world. Economist, May 26th 2011

  • Pagani M, Liu Z, LaRiviere J, Ravelo AC (2010) High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nature Geosci 3:27–30

    Article  CAS  Google Scholar 

  • Page AA, Zalasiewicz JA, Williams M, Popov LE (2007) Were transgressive black shales a negative feedback modulating eustasy in the Early Palaeozoic Icehouse? In: Williams M, Haywood AM, Gregory FJ, Schmidt DN (eds) Deep-time perspectives on climate change: marrying the signals from computer models and biological proxies. The Geological Society for The Micropalaeontological Society, London, pp 123–156

    Google Scholar 

  • Price SJ, Ford JR, Cooper AH, Neal C (2011) Humans as major geological and geomorphological agents in the Anthropocene: the significance of artificial ground in Great Britain. Phil Trans Royal Soc A369:1056–1084

    Article  Google Scholar 

  • Revkin A (1992) Global warming: understanding the forecast. American Museum of Natural History, Environmental Defense Fund, Abbeville Press, New York

    Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson A, Chapin FS III, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, de Nykvist B, Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475

    Article  Google Scholar 

  • Roger J (1962) (ed.) Buffon: Les Époques de la Nature. Mémoires du Muséum National d’Histoire Naturelle. Nouvelle Série, Série C, Sciences de la Terre, Tome X. Paris, Editions du Muséum

  • Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61:261–293

    Article  CAS  Google Scholar 

  • Ruddiman WF (2013) Anthropocene. Ann Rev Earth Planet Sci. doi:10.1146/annurev-earth-050212-123944

    Google Scholar 

  • Sheehan PM (2001) The Late Ordovician mass extinction. Ann Rev Earth Planet Sci 29:331–364

    Article  CAS  Google Scholar 

  • Shen J, Algeo TJ, Hu Q, Zhang N, Zhou L, Xia W, Xie S, Feng Q (2012) Negative C-isotope excursions at the Permian-Triassic boundary linked to volcanism. Geology 40:963–966

    Article  CAS  Google Scholar 

  • Signor III PW, Lipps JH (1982) Sampling bias, gradual extinction patterns, and catastrophes in the fossil record. In: Silver LT, Schultz PH (eds) Geological implications of impacts of large asteroids and comets on the Earth. Geol Soc Am Spec Publ 190: 291–296

  • Steffen W, Sanderson A, Tyson PD, Jaeger J, Matson PA, Moore B III, Oldfield F, Richardson K, Schnellnhuber HJ, Turner BL, Wasson RJ (2004) Global change and the Earth system: a planet under pressure. Springer-Verlag, Berlin

    Google Scholar 

  • Steffen W, Crutzen PJ, McNeill JR (2007) The Anthropocene: are humans now overwhelming the great forces of Nature? Ambio 36:614–621

    Article  CAS  Google Scholar 

  • Steffen W, Grinevald J, Crutzen P, McNeill J (2011a) The Anthropocene: conceptual and historical perspectives. Phil Trans Royal Soc A369:842–867

    Article  Google Scholar 

  • Steffen W, Persson Å, Deutsch L, Zalasiewicz J, Williams M, Richardson K, Crumley C, Crutzen P, Folke C, Gordon L, Molina M, Ramanathan V, Rockström J, Scheffer M, Schellnhuber J, Svedin U (2011b) The Anthropocene: from global change to planetary stewardship. Ambio 40:739–761

    Article  Google Scholar 

  • Stoppani A (1873) Corsa di Geologia, Milan

  • Thomas DJ, Zachos JC, Bralower TJ, Thomas E, Bohaty S (2002) Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the Palaeocene-Eocene thermal maximum. Geology 30:1067–1070

    Article  CAS  Google Scholar 

  • Thomas CD et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  Google Scholar 

  • Tyrrell T (2011) Anthropogenic modification of the oceans. Phil Trans Royal Soc A369:887–908

    Article  Google Scholar 

  • Tyrrell T, Shepherd JG, Castle S (2007) The long-term legacy of fossil fuels. Tellus B 59:664–672

    Article  Google Scholar 

  • Vane CH, Chenery SR, Harrison I, Kim AW, Moss-Hayes V, Jones DG (2011) Chemical signatures of the Anthropocene in the Clyde estuary, UK: sediment-hosted Pb, 207/206 Pb, total petroleum hydrocarbon and polychlorinated biphenyl pollution records. Phil Trans Royal Soc A369:1085–1111

    Article  Google Scholar 

  • Vernadsky V (1929) La Biosphere. Librairie Félix Alcan, Paris

    Google Scholar 

  • Waters CW, Zalasiewicz JA, Williams M, Ellis M, Snelling A (eds) (in press) A Stratigraphical Basis for the Anthropocene. Geol Soc London Spec Publ, 395

  • Williams M, Zalasiewicz J, Haywood A, Ellis M (2011) The Anthropocene: a new epoch of geological time? Phil Trans Royal Soc 369:833–1112

    Google Scholar 

  • Williams M, Zalasiewicz J, Waters CN, Landing E (2013) Is the fossil record of complex animal behaviour a stratigraphical analogue for the Anthropocene?. In: Waters CW, Zalasiewicz JA, Williams M, Ellis M, Snelling A (eds) A stratigraphical basis for the Anthropocene. Geol Soc London Spec Publ, 395. doi:10.1144/SP395.8

  • Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  Google Scholar 

  • Zachos JC et al (2005) Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308:1611–1615

    Article  CAS  Google Scholar 

  • Zalasiewicz JA, Williams M, Merrell M, Page A, Blackett E (2007) Early Silurian (Llandovery) graptolites from central Saudi Arabia: first documented record of Telychian faunas from the Arabian peninsula. GeoArabia 12:15–36

    Google Scholar 

  • Zalasiewicz J, Williams M, Smith A, Barry TL, Bown PR, Rawson P, Brenchley P, Cantrill D, Coe AE, Cope JCW, Gale A, Gibbard PL, Gregory FJ, Hounslow M, Knox R, Powell P, Waters C, Marshall J, Oates M, Stone P (2008) Are we now living in the Anthropocene? GSA Today 18(2):4–8

    Article  Google Scholar 

  • Zalasiewicz JA, Taylor L, Rushton AWA, Loydell DK, Rickards RB, Williams M (2009) Graptolites in British stratigraphy. Geol Mag 146:785–850

    Article  CAS  Google Scholar 

  • Zalasiewicz J, Williams M, Fortey RA, Smith AG, Barry TL, Coe AL, Bown PR, Gale A, Gibbard PL, Gregory FJ, Hounslow MW, Kerr AC, Pearson P, Knox R, Powell J, Waters C, Marshall J, Oates M, Rawson P, Stone P (2011) Stratigraphy of the Anthropocene. Phil Trans Royal Soc A369:1036–1055

    Article  Google Scholar 

  • Zalasiewicz J, Williams M, Waters CN (in press). Can an Anthropocene Series be defined and recognised?. In: Waters CW, Zalasiewicz JA, Williams M, Ellis M, Snelling A (eds) A Stratigraphical Basis for the Anthropocene. Geol Soc London Spec Publ, 395

Download references

Acknowledgments

JZ thanks the Accademia dei Lincei for the invitation to speak on this theme and the support to attend the meeting, and we both thank Maria Bianca Cita for encouragement to produce this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Zalasiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zalasiewicz, J., Williams, M. The Anthropocene: a comparison with the Ordovician–Silurian boundary. Rend. Fis. Acc. Lincei 25, 5–12 (2014). https://doi.org/10.1007/s12210-013-0265-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-013-0265-x

Keywords

Navigation