Skip to main content
Log in

Apical and Basal Stress Fibers have Different Roles in Mechanical Regulation of the Nucleus in Smooth Muscle Cells Cultured on a Substrate

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Actin stress fibers (SFs) play important roles in cellular mechanotransduction and in regulation of various cellular functions. Stress fibers generate internal tension and contribute to physical interactions between cells and extracellular matrices. We recently found that SFs in vascular smooth muscle cells (SMCs) cultured on a two-dimensional substrate mechanically interact with cell nucleus via nuclear membrane proteins, and that the internal tension of SFs is transmitted directly to the nucleus. However, SFs exist on both the apical side and the basal side of adherent cells on a substrate, and it remains unclear whether these two types of SFs play different roles on the mechanical environment around the nucleus. Here, we investigated differences between the apical and basal stress fibers (BSFs) in SMCs by using a laser nano-scissor technique. We microdissected apical SFs running across the top surface of nucleus (actin cap fibers: ACFs) or BSFs underneath the nucleus by using a laboratory-built laser nano-scissor and observed the subsequent mechanical responses of the SFs and the nucleus. Shortening of the dissected fibers was significantly greater in the ACFs than in the BSFs. Nuclei also moved in the direction of retraction of the dissected fibers, and displacement and local deformation of the nucleus was more remarkable after the dissection of the ACFs than after that of the BSFs. ACFs mostly aligned in the major axis of the nucleus, whereas BSFs showed a weak alignment with asymmetry: the direction of BSFs was rotated clockwise by ~10° from the major axis of the nucleus. These results indicate that ACFs and BSFs play different roles in mechanical regulation of the nucleus, and that intracellular tension is transmitted to the nucleus more efficiently by ACFs. ACFs may play significant roles in controlling the intranuclear distribution of DNA through intracellular orientation and positioning of the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Anno, T., N. Sakamoto, and M. Sato. Role of nesprin-1 in nuclear deformation in endothelial cells under static and uniaxial stretching conditions. Biochem. Biophys. Res. Commun. 424(1):94–99, 2012.

    Article  Google Scholar 

  2. Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Geometric control of cell life and death. Science 276:1425–1428, 1997.

    Article  Google Scholar 

  3. Collinsworth, A. M., S. Zhang, W. E. Kraus, and G. A. Truskey. Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. Am. J. Physiol. Cell Physiol. 283:1219–1227, 2002.

    Article  Google Scholar 

  4. Colombelli, J., A. Besser, H. Kress, E. G. Reynaud, P. Girard, E. Caussinus, U. Haselmann, J. V. Small, U. S. Schwarz, and E. H. Stelzer. Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J. Cell Sci. 122(Pt 10):1665–1679, 2009.

    Article  Google Scholar 

  5. Gerlitz, G., and M. Bustin. The role of chromatin structure in cell migration. Trends Cell Biol. 21(1):6–11, 2011.

    Article  Google Scholar 

  6. Ingber, D. E. Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc. Natl Acad. Sci. U.S.A. 87:3579–3583, 1990.

    Article  Google Scholar 

  7. Khatau, S. B., R. J. Bloom, S. Bajpai, D. Razafsky, S. Zang, A. Giri, P. H. Wu, J. Marchand, A. Celedon, C. M. Hale, S. X. Sun, D. Hodzic, and D. Wirtz. The distinct roles of the nucleus and nucleus–cytoskeleton connections in three-dimensional cell migration. Sci. Rep. 2:488, 2012. doi:10.1038/srep00488.

    Article  Google Scholar 

  8. Khatau, S. B., C. M. Hale, P. J. Stewart-Hutchinson, M. S. Patel, C. L. Stewart, P. C. Searson, D. Hodzic, and D. Wirtz. A perinuclear actin cap regulates nuclear shape. Proc. Natl Acad. Sci. U.S.A. 106(45):19017–19022, 2009.

    Article  Google Scholar 

  9. Kim, D. H., S. B. Khatau, Y. Feng, S. Walcott, S. X. Sun, G. D. Longmore, and D. Wirtz. Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci. Rep. 2:555, 2012. doi:10.1038/srep00555.

    Google Scholar 

  10. King, M., T. Drivas, and G. Blobel. A network of nuclear envelope membrane proteins linking centromeres to microtubules. Cell 134:427–438, 2008.

    Article  Google Scholar 

  11. Kumar, S., I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90(10):3762–3773, 2006.

    Article  Google Scholar 

  12. Luxton, G. W., E. R. Gomes, E. S. Folker, E. Vintinner, and G. G. Gundersen. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329(5994):956–959, 2010.

    Article  Google Scholar 

  13. Minc, N., D. Burgess, and F. Chang. Influence of cell geometry on division-plane positioning. Cell 144(3):414–426, 2011.

    Article  Google Scholar 

  14. Nagayama, K., Y. Kimura, N. Makino, and T. Matsumoto. Strain waveform dependence of stress fiber reorientation in cyclically stretched osteoblastic cells: effects of viscoelastic compression of stress fibers. Am. J. Physiol. Cell Physiol. 302:1469–1478, 2012.

    Article  Google Scholar 

  15. Nagayama, K., and T. Matsumoto. Contribution of actin filaments and microtubules to quasi-in situ tensile properties and internal force balance of cultured smooth muscle cells on a substrate. Am. J. Physiol. Cell Physiol. 295:1569–1578, 2008.

    Article  Google Scholar 

  16. Nagayama, K., and T. Matsumoto. Estimation of single stress fiber stiffness in cultured aortic smooth muscle cells under relaxed and contracted states: its relation to dynamic rearrangement of stress fibers. J. Biomech. 43:1443–1449, 2010.

    Article  Google Scholar 

  17. Nagayama, K., and T. Matsumoto. Dynamic change in morphology and traction forces at focal adhesions in cultured vascular smooth muscle cells during contraction. Cell. Mol. Bioeng. 4(3):348–357, 2011.

    Article  Google Scholar 

  18. Nagayama, K., Y. Yahiro, and T. Matsumoto. Stress fibers stabilize the position of intranuclear DNA through mechanical connection with the nucleus in vascular smooth muscle cells. FEBS Lett. 585(24):3992–3997, 2011.

    Article  Google Scholar 

  19. Orr, A. W., B. P. Helmke, B. R. Blackman, and M. A. Schwartz. Mechanisms of mechanotransduction. Dev. Cell 10:11–20, 2006.

    Article  Google Scholar 

  20. Russell, R. J., S. L. Xia, R. B. Dickinson, and T. P. Lele. Sarcomere mechanics in capillary endothelial cells. Biophys. J. 97(6):1578–1585, 2009.

    Article  Google Scholar 

  21. Smilenov, L. B., A. Mikhailov, R. J. Pelham, E. E. Marcantonio, and G. G. Gundersen. Focal adhesion motility revealed in stationary fibroblasts. Science 286(5442):1172–1174, 1999.

    Article  Google Scholar 

  22. Smith, P. G., C. Roy, S. Fisher, Q. Q. Huang, and F. Brozovich. Selected contribution: mechanical strain increases force production and calcium sensitivity in cultured airway smooth muscle cells. J. Appl. Physiol. 89(5):2092–2098, 2000.

    Google Scholar 

  23. Tanner, K., A. Boudreau, M. J. Bissell, and S. Kumar. Dissecting regional variations in stress fiber mechanics in living cells with laser nanosurgery. Biophys. J. 99(9):2775–2783, 2010.

    Article  Google Scholar 

  24. Vogel, V., and M. Sheetz. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7:265–275, 2006.

    Article  Google Scholar 

  25. Wang, N., J. Tytell, and D. Ingber. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell. Biol. 10:75–82, 2009.

    Article  Google Scholar 

  26. Wu, J., R. B. Dickinson, and T. P. Lele. Investigation of in vivo microtubule and stress fiber mechanics with laser ablation. Integr. Biol. (Camb.) 4(5):471–479, 2012.

    Article  Google Scholar 

  27. Xiong, H., F. Rivero, U. Euteneuer, S. Mondal, S. Mana-Capelli, D. Larochelle, A. Vogel, B. Gassen, and A. A. Noegel. Dictyostelium Sun-1 connects the centrosome to chromatin and ensures genome stability. Traffic 9(5):708–724, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (nos. 24680051, 24650257, and 25111711 to K.N., and nos. 22127008 and 22240055 to T.M.), and the Hibi Science Foundation, Japan (K.N.).

Conflicts of interest

The authors declare that they have no conflict of interest with regards to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazuaki Nagayama or Takeo Matsumoto.

Additional information

Associate Editor David Sept oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1791 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagayama, K., Yahiro, Y. & Matsumoto, T. Apical and Basal Stress Fibers have Different Roles in Mechanical Regulation of the Nucleus in Smooth Muscle Cells Cultured on a Substrate. Cel. Mol. Bioeng. 6, 473–481 (2013). https://doi.org/10.1007/s12195-013-0294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-013-0294-7

Keywords

Navigation