Radiological Physics and Technology

, Volume 1, Issue 1, pp 44–54

Experimental verification of proton beam monitoring in a human body by use of activity image of positron-emitting nuclei generated by nuclear fragmentation reaction

Authors

    • Particle Therapy DivisionResearch Center for Innovative Oncology, National Cancer Center
    • Department of Nuclear Engineering and ManagementGraduate School of Engineering, University of Tokyo
    • Department of RadiologyGraduate School of Medicine, University of Tokyo
  • Aya Miyatake
    • Department of Nuclear Engineering and ManagementGraduate School of Engineering, University of Tokyo
  • Kazumasa Inoue
    • Department of RadiologyNational Cancer Center
    • Functional Imaging DivisionResearch Center for Innovative Oncology, National Cancer Center
    • Graduate School of Health ScienceTokyo Metropolitan University
  • Tomoko Gomi-Miyagishi
    • Particle Therapy DivisionResearch Center for Innovative Oncology, National Cancer Center
  • Ryosuke Kohno
    • Particle Therapy DivisionResearch Center for Innovative Oncology, National Cancer Center
  • Satoru Kameoka
    • Particle Therapy DivisionResearch Center for Innovative Oncology, National Cancer Center
  • Keiichi Nakagawa
    • Department of RadiologyGraduate School of Medicine, University of Tokyo
  • Takashi Ogino
    • Particle Therapy DivisionResearch Center for Innovative Oncology, National Cancer Center
Article

DOI: 10.1007/s12194-007-0008-8

Cite this article as:
Nishio, T., Miyatake, A., Inoue, K. et al. Radiol Phys Technol (2008) 1: 44. doi:10.1007/s12194-007-0008-8

Abstract

Proton therapy is a form of radiotherapy that enables concentration of dose on a tumor by use of a scanned or modulated Bragg peak. Therefore, it is very important to evaluate the proton-irradiated volume accurately. The proton-irradiated volume can be confirmed by detection of pair-annihilation gamma rays from positron-emitting nuclei generated by the nuclear fragmentation reaction of the incident protons on target nuclei using a PET apparatus. The activity of the positron-emitting nuclei generated in a patient was measured with a PET-CT apparatus after proton beam irradiation of the patient. Activity measurement was performed in patients with tumors of the brain, head and neck, liver, lungs, and sacrum. The 3-D PET image obtained on the CT image showed the visual correspondence with the irradiation area of the proton beam. Moreover, it was confirmed that there were differences in the strength of activity from the PET-CT images obtained at each irradiation site. The values of activity obtained from both measurement and calculation based on the reaction cross section were compared, and it was confirmed that the intensity and the distribution of the activity changed with the start time of the PET imaging after proton beam irradiation. The clinical use of this information about the positron-emitting nuclei will be important for promoting proton treatment with higher accuracy in the future.

Keywords

Proton therapyProton beam monitoringBeam OFF-LINE PET systemPET-CT imaging

Copyright information

© Japanese Society of Radiological Technology and Japan Society of Medical Physics 2007