Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg

, Volume 79, Issue 1, pp 11-23

First online:

A superadditive property of Hadamard’s gamma function

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Hadamard’s gamma function is defined by
$$H(x)=\frac{1}{\Gamma(1-x)}\frac{d}{dx}\log \frac{\Gamma(1/2-x/2)}{\Gamma(1-x/2)},$$
where Γ denotes the classical gamma function of Euler. H is an entire function, which satisfies H(n)=(n−1)! for all positive integers n. We prove the following superadditive property.
Let α be a real number. The inequality
$$H(x)+H(y)\leq H(x+y)$$
holds for all real numbers x,y with x,yα if and only if αα 0=1.5031…. Here, α 0 is the only solution of H(2t)=2H(t) in [1.5,∞).


Hadamard’s and Euler’s gamma functions Psi function Superadditive Convex Inequalities

Mathematics Subject Classification (2000)

33B15 39B62