Skip to main content

Advertisement

Log in

Quality and Variability of Commercial-Scale Short Rotation Willow Biomass Harvested Using a Single-Pass Cut-and-Chip Forage Harvester

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

To date, most of the data on the characteristics of many short rotation woody crops has come from biomass that was hand harvested from small-scale yield trials. Concerns have been raised that there is insufficient information regarding the variability in biomass characteristics when material is harvested at commercial scales, which can impact the efficiency of biorefineries and other end users. The objectives of this study are to (1) characterize the biomass (i.e., ash, moisture, energy and elemental content, and particle size distribution) generated from commercial-scale shrub willow harvests at two sites, (2) evaluate compliance the published International Organization for Standardization (ISO) standards, and (3) contrast with “pristine” biomass from yield trials. Commercially generated chips were generally compliant with ISO standards for B1 chips. The mean ash content was 2.1 % (SD 0.59) dry basis and ranged from 0.8 to 3.5 % for samples collected from 224 truckloads of chips. There was a site effect for ash: 100 % compliance at one site and 82 % compliance at the second; loads exceeded the 3 % standard by less than 0.5 percentage points. The ash content of the Fish Creek cultivar was almost 1 % less than other cultivars and it is significantly lower (P < 0.0001). The mean moisture content was 44 % (SD 2.2) and ranged from 37 to 51 %. The harvested biomass was similar to pristine biomass with the exception of ash content, and the variability was similar across all characteristics measured. The low variability of willow biomass characteristics suggests that material with a consistent set of characteristics can be generated from willow crops with a cut-and-chip harvesting system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. El Bassam N (2010) Handbook for bioenergy crops. Earthscan, London, 516 p

    Google Scholar 

  2. USDOE (2011) U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  3. Fargione J, Hill J, Tilman D et al (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238. doi:10.1126/science.1152747

    Article  CAS  PubMed  Google Scholar 

  4. Kenney KL, Smith WA, Gresham GL, Westover TL (2013) Understanding biomass feedstock variability. Biogeosciences 4:111–127. doi:10.4155/bfs.12.83

    CAS  Google Scholar 

  5. Volk TA, Castellano P, Abrahamson LP (2010) Reducing the cost of willow biomass by improving willow harvest efficiency and reducing harvesting costs. New York State Energy Research and Development Authority, Albany, NY https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Biomass-Solar-Wind/reducing-the-cost-of-willow-biomass.pdf. Accessed 12 Sept 2014

  6. Smith WB, Miles PD, Perry CH, Pugh SA (2007) Forest resources of the United States. USDA Forest Service, Washington DC http://www.fs.fed.us/nrs/pubs/gtr/gtr_wo78.pdf

  7. Wojnar Z, Van Nostrand JM, Rutzke C (2010) Renewable fuels roadmap and sustainable biomass feedstock supply for New York—Final Report 10-05. New York State Energy Research and Development Authority. Albany, NY. http://www.nyserda.ny.gov/-/media/Files/Publications/Renewable-Fuels-Roadmap/Renewable-Fuels-Roadmap.pdf

  8. Wojnar Z (2013) Renewable fuels roadmap and sustainable biomass feedstock supply for New York: annual update #2. New York State Energy Research and Development Authority. Albany, NY. http://www.nyserda.ny.gov/-/media/Files/Publications/Renewable-Fuels-Roadmap/Renewable-Fuels-Roadmap-2012-Update.pdf

  9. Krzyżaniak M, Stolarski MJ, Waliszewska B et al (2014) Willow biomass as feedstock for an integrated multi-product biorefinery. Ind Crops Prod 58:230–237. doi:10.1016/j.indcrop.2014.04.033

    Article  Google Scholar 

  10. Hess R, Wright C, Kenney KL, Searcy EM (2009) Uniform-format solid feedstock supply system: a commodity-scale design to produce an infrastructure-compatible bulk solid from lignocellulosic biomass report number INL/EXT-09-15423. Idaho National Lab, Idaho Falls, 14

    Book  Google Scholar 

  11. Abrahamson LP, Volk TA, Smart LP (2010) Shrub willow producers handbook. Accessed 21 May 2014 http://www.esf.edu/willow/documents/ProducersHandbook.pdf

  12. Lippke B, Gustafson R, Venditti R et al (2012) Comparing life-cycle carbon and energy impacts for biofuel, wood product, and forest management alternatives. For Prod J 62:247–257

    CAS  Google Scholar 

  13. Caputo J, Balogh SB, Volk TA et al (2013) Incorporating uncertainty into a life cycle assessment (LCA) model of short-rotation willow biomass (Salix spp.) crops. BioEnergy Res 7:48–59. doi:10.1007/s12155-013-9347-y

    Article  Google Scholar 

  14. Volk TA, Abrahamson LP, Buchholz T et al (2014) Development and deployment of willow biomass crops. In: Celluosic Energy Cropping Systems. Wiley, NY, pp 201–217

    Chapter  Google Scholar 

  15. Lee QF, Bennington CP (2005) The effect of particle size distribution on pressure drop through packed beds of cooked wood chips. Can J Chem Eng 83:755–763

    Article  CAS  Google Scholar 

  16. Kofman PD (2006) Quality wood chip fuel. Danish Forestry Extension. Accessed 22 Jan 22 2014 http://www.seai.ie/Grants/Renewable_Heat_Deployment_Programme/About_Renewable_Heating/Wood_Chip_and_Wood_Pellet_Boilers/Quality_Wood_Chip_Fuel.pdf

  17. Dupont C, Rouge S, Berthelot A et al (2010) Bioenergy II: suitability of wood chips and various biomass types for use in plant of BtL production by gasification. Int J Chem React Eng 8:A74

    Google Scholar 

  18. Archambault-Léger V, Lynd LR (2014) Fluid mechanics relevant to flow through pretreatment of cellulosic biomass. Bioresour Technol 157:278–283. doi:10.1016/j.biortech.2014.01.035

    Article  PubMed  Google Scholar 

  19. Daystar J, Venditti R, Gonzalez R, Jameel H, Jett M, Reeb C (2013) Impacts of feedstock composition on alcohol yields and greenhouse gas emissions from the NREL thermochemical ethanol conversion process. BioResources 8:5261–5278

    Article  Google Scholar 

  20. Tao G, Lestander TA, Geladi P, Xiong S (2012) Biomass properties in association with plant species and assortments I: a synthesis based on literature data of energy properties. Renew Sustain Energy Rev 16:3481–3506. doi:10.1016/j.rser.2012.02.039

    Article  CAS  Google Scholar 

  21. Chandrasekaran SR, Hopke PK, Rector L et al (2012) Chemical composition of wood chips and wood pellets. Energy Fuels 26:4932–4937. doi:10.1021/ef300884k

    Article  CAS  Google Scholar 

  22. Tallaksen J (2011) A case study in biomass preprocessing. In: Biomass gasification: a comprehensive demonstration of a community-scale biomass energy system. University of Minnisota, Minneapolis, MN, p 20. Accessed 6 Oct 2014 http://renewables.morris.umn.edu/biomass/documents/USDA_Report/SII_Preprocessing.pdf

  23. Yancey N, Tumuluru JS, Wright C (2013) Drying, grinding and pelletezation studies on raw and formulated biomass feedstocks for bioenergy applications. J Biobased Mater Bioenergy 7:549–558

    Article  CAS  Google Scholar 

  24. ISO (2014) Solid biofuels—fuel specifications and classes—part 4. Graded wood chips. ISO/FDIS 17225-4:2013(E). International Organization for Standardization, Switzerland

    Google Scholar 

  25. Eisenbies MH, Volk TA, Posselius J et al (2014) Evaluation of a single-pass, cut and chip harvest system on commercial-scale, short-rotation shrub willow biomass crops. BioEnergy Res . doi:10.1007/s12155-014-9482-0

    Google Scholar 

  26. Serapiglia MJ, Cameron KD, Stipanovic AJ et al (2012) Yield and woody biomass traits of novel shrub willow hybrids at two contrasting sites. BioEnergy Res 6:533–546. doi:10.1007/s12155-012-9272-5

    Article  Google Scholar 

  27. Smart LP, Cameron KD (2012) Shrub willow. In: Kole C (ed) Handbook of bioenergy crop plants. CRC, Boca Raton, pp 687–709

    Chapter  Google Scholar 

  28. Briggs RD, White EH, Yawney HW (1986) Sampling trailers for estimating moisture content and nutrient content for hardwood chips. North J Appl For 3:156–158

    Google Scholar 

  29. ASABE (2012) Moisture measurement—ANSI/ASABE Standards S358.2. 1

  30. SPPB (2006) Wood chips for pulp production, SCAN-CM 42:06. Scandinavian Pulp, Paper and Board Testing Committee, Stockhom, Sweden

  31. TAPPI (2002) Sampling and preparing wood for analysis-, T 257 cm-02. Technical Association of the Pulp and Paper Industry. Peachtree Corners, GA

    Google Scholar 

  32. ISO (2014) Solid biofuels—fuel specifications and classes—part 1. General requirements. ISO/FDIS 17225-1:2013(E). International Organization for Standardization, Switzerland

    Google Scholar 

  33. Westerman R (1990) Soil testing and plant analysis, 3rd edn. Soil Science Society of America, Madison

    Google Scholar 

  34. ASTM (2013) Standard test method for gross calorific value of coal and coke, ASTM standard D5865. American Society for Testing and Materials. ASTM , West Conshohocken, PA

  35. Huang C, Schulte E (1985) Digestion of plant tissue for analysis by ICP emission spectroscopy. Commun Soil Sci Plant Anal 16:943–958

    Article  CAS  Google Scholar 

  36. Horneck D, Miller R (1998) Determination of total nitrogen in plant tissue. In: Kalra YP (ed) Handook of reference methods for plant analysis. CRC, Boca Raton

    Google Scholar 

  37. ASABE (2012) Method of determining and expressing particle size of chopped forage materials by screening—ANSI/ASABE standards S424.1. 3. 75-84

  38. Savoie P, Audy-Dube MA, Pilon G, Morissette R (2013) Chopped forage particle size analysis in one, two and three dimensions—131620148. ASABE, Kansas City, p 13

    Google Scholar 

  39. Savoie P, Pilon G, Sudhagar M (2013) Particle size measurement by static and dynamic image analysis for processed woody biomass crops—131578073. ASABE, Kansas City, p 13

    Google Scholar 

  40. Brown LD, Cai TT, Dasgupta A (2002) Confidence intervals for a binomial proportion and asymptotic expansions. Ann Stat 160–201

  41. Carmer S, Swanson M (1973) An evaluation of ten pairwise multiple comparison procedures by Monte Carlo methods. J Am Stat Assoc 68:66–74

    Article  Google Scholar 

  42. Tharakan PJ, Volk TA, Abrahamson LP, White EH (2003) Energy feedstock characteristics of willow and hybrid poplar clones at harvest age. Biomass Bioenergy 25:571–580. doi:10.1016/S0961-9534(03)00054-0

    Article  CAS  Google Scholar 

  43. Volk TA, Abrahamson LP, Cameron KD et al (2011) Yields of biomass crops across a range of sites in North America. Aspects Appl Biol 112:67–74

    Google Scholar 

  44. Schweier J, Becker G (2012) New Holland forage harvester’s productivity in short rotation coppice: evaluation of field studies from a German perspective. Int J For Eng 23:82–88. doi:10.1080/14942119.2012.10739964

    Google Scholar 

  45. Stolarski MJ, Szczukowski S, Tworkowski J et al (2011) Short rotation willow coppice biomass as an industrial and energy feedstock. Ind Crops Prod 33:217–223. doi:10.1016/j.indcrop.2010.10.013

    Article  Google Scholar 

  46. Berhongaray G, El Kasmioui O, Ceulemans R (2013) Comparative analysis of harvesting machines on an operational high-density short rotation woody crop (SRWC) culture: one-process versus two-process harvest operation. Biomass Bioenergy 58:333–342. doi:10.1016/j.biombioe.2013.07.003

    Article  Google Scholar 

  47. Brand MA, Bolzon de Muñiz GI, Quirino WF, Brito JO (2011) Storage as a tool to improve wood fuel quality. Biomass Bioenergy 35:2581–2588. doi:10.1016/j.biombioe.2011.02.005

    Article  CAS  Google Scholar 

  48. Kofman PD, Spinelli R (1997) Storage and handling of willow from short rotation coppice. Forskiningschentret for Skovog Landskab, Hoersholm, 120 pp

    Google Scholar 

  49. Suadicani K, Gamborg C (1999) Fuel quality of whole-tree chips from freshly felled and summer dried Norway spruce on a poor sandy soil and a rich loamy soil. Biomass Bioenergy 17:199–208

    Article  Google Scholar 

  50. Wang J, Hartley D, Liu W (2013) Biomass harvesting systems and analysis. In: Wood-Based Energy in the Northern Forest. Springer, New York, pp 101–120

    Chapter  Google Scholar 

  51. Wolfsmayr UJ, Rauch P (2014) The primary forest fuel supply chain: a literature review. Biomass Bioenergy 60:203–221. doi:10.1016/j.biombioe.2013.10.025

    Article  Google Scholar 

  52. Jacob S, Da Silva PD, Dupont C et al (2013) Short rotation forestry feedstock: influence of particle size segregation on biomass properties. Fuel 111:820–828. doi:10.1016/j.fuel.2013.04.043

    Article  CAS  Google Scholar 

  53. Amidon T, Bujanovic B, Liu S, Howard J (2011) Commercializing biorefinery technology: a case study for the multi-product pathway to a viable biorefinery. Forests 2:929–947

    Article  Google Scholar 

  54. Amidon T, Wood C, Shupe A et al (2008) Biorefinery: conversion of woody biomass to chemicals, energy and materials. J Biobased Mater Bioenergy 2:100–120

    Article  Google Scholar 

  55. Biomass Energy Centre (2011) Woodheat solutions summary of woodfuel standards. Biomass Energy Centre, Surray, 11 pp

    Google Scholar 

  56. Nkansah K, Dawson-Andoh B (2010) Rapid characterization of biomass using fluorescence spectroscopy coupled with multivariate data analysis. I. Yellow poplar (Liriodendron tulipifera L.). J Renew Sustain Energy 2:023103

    Article  Google Scholar 

  57. Sheng K, Shen Y, Yang H et al (2012) Rapid determination of componential contents and calorific value of selected agricultural biomass feedstocks using spectroscopic technology. Spectrosc Spectr Anal 32:2805–2809. doi:10.3964/j.issn.1000-0593(2012) 10-2805-05

    CAS  Google Scholar 

  58. Sluiter A, Wolfrum E (2013) Near infrared calibration models for pretreated corn stover slurry solids, isolated and in situ. J Infrared Spectrosc 21:249–257. doi:10.1255/jnirs.1065

    Article  CAS  Google Scholar 

  59. McCracken AR, Walsh L, Moore PJ et al (2011) Yield of willow (Salix spp.) grown in short rotation coppice mixtures in a long-term trial. Ann Appl Biol 159:229–243

    Article  Google Scholar 

  60. McCracken AR, Walsh L, Moore PJ, Lynch M, Cowan P, Dawson M, Watson S (2011) Yield of willow (Salix spp.) grown in short rotation coppice mixtures in a long-term trial. Ann Appl Biol 159:229–243. doi:10.1111/j.1744-7348.2011.00488.x

    Article  Google Scholar 

  61. Garstang J, Weekes A, Poulter R, Bartlett D (2002) Identification and characterisation of factors affecting losses in the large-scale, non-ventilated bulk storage of wood chips and development of best storage practices. First Renewables LTD, London, p 119. Accessed 6 Oct 2014 http://www.biomassenergycentre.org.uk/pls/portal/url/ITEM/6C8B949622CF6944E04014AC08047E05

  62. Facello A, Cavallo E, Magagnotti N et al (2013) The effect of chipper cut length on wood fuel processing performance. Fuel Process Technol 116:228–233. doi:10.1016/j.fuproc.2013.07.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible by the funding under award no. EE0001037 from the US Department of Energy Bioenergy Technologies Office, New York State Research and Development Authority (NYSERDA), the Empire State Development Division of Science, Technology and Innovation (NYSTAR) and through the Agriculture and Food Research Initiative Competitive Grant No. 2012-68005-19703 from the USDA National Institute of Food and Agriculture. We would also like to thank Andrew Lewis and Samvel Karapetyan for their important contributions to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Eisenbies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisenbies, M.H., Volk, T.A., Posselius, J. et al. Quality and Variability of Commercial-Scale Short Rotation Willow Biomass Harvested Using a Single-Pass Cut-and-Chip Forage Harvester. Bioenerg. Res. 8, 546–559 (2015). https://doi.org/10.1007/s12155-014-9540-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9540-7

Keywords

Navigation