Skip to main content

Advertisement

Log in

Fertilization of SRC Willow, I: Biomass Production Response

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Short rotation coppice (SRC) willow is often regarded as one of the most promising crops to increase biomass production and thereby meet the growing demand for renewable energy. This study is based on the hypotheses that biomass production of SRC willow responds positively to increasing doses of nitrogen, and that similar biomass production response can be achieved by use of mineral fertilizer, sewage sludge and animal manure. A 2-year experiment was established with the clone Tordis grown on a sandy soil in northern Jutland, Denmark. The experiment included mineral fertilizer, sludge and manure, and treatments of different doses up to 360 kg nitrogen ha−1. The fertilization led to a modest but significant increase in biomass production. The largest production of 11.9 oven dried tons/ha/year was obtained for the application of 60 kg nitrogen ha−1 annually. Higher doses did not lead to increased biomass production; in fact, production seemed to decline with increasing fertilization application (not significant). We found no difference in production between different types of fertilizers. The limited response of the fertilization may be caused by a high fertility of the soil due to former agricultural fertilization. The number of sagging shoots increased significantly with increasing nitrogen dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bentsen NS, Felby C (2012) Biomass for energy in the European Union—a review of bioenergy resource assessments. Biotechnology for Biofuels 5:25. doi:10.1186/1754-6834-5-25

  2. Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25(1):1–28

    Article  Google Scholar 

  3. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Goss Eng A, Lucht W, Mapako M, Masera Cerutti O, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlomer S, von Stechow C (ed) IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. University Press, Cambridge, United Kingdom and New York, NY, USA

  4. Karp A, Halford NG (2011) Energy crops: introduction. In: Halford NG, Karp A (eds) Energy crops, 1st edn. The Royal Society of Chemistry, Cambrigde, pp. 1–12

  5. Mantau U, Saal U, Steierer PK, Lindner M, Verkerk H, Eggers J et al (2012) EUwood—real potential for change in growth and use of EU forests. University of Hamburg, Hamburg

    Google Scholar 

  6. Volk TA, Verwijst T, Tharakan PJ, Abrahamson LP, White EH (2004) Growing fuel: a sustainability assessment of willow biomass crops. Front Ecol Environ 2(8):411–418

    Article  Google Scholar 

  7. Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenergy 20(6):399–411

    Article  Google Scholar 

  8. Dimitriou I, Rosenqvist H (2011) Sewage sludge and wastewater fertilisation of Short Rotation Coppice (SRC) for increased bioenergy production—biological and economic potential. Biomass Bioenergy 35(2):835–842

    Article  Google Scholar 

  9. Jørgensen U (2005) How to reduce nitrate leaching by production of perennial energy crops. In 3rd International Nitrogen Conference, Nanjing, China, 2004 Edited by Zhu Z, Minami K, Xing G Science Press USA Inc: 2005: 513–518

  10. Rowe RL, Street NR, Taylor G (2009) Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew Sustain Energy Rev 13(1):260–279

    Article  Google Scholar 

  11. Labrecque M, Teodorescu TI (2003) High biomass yield achieved by Salix clones in SRIC following two 3-year coppice rotations on abandoned farmland in southern Quebec, Canada. Biomass Bioenergy 25(2):135–146

    Article  Google Scholar 

  12. Aronsson P, Rosenqvist H (2011) Gödslingsrekommendationer för salix 2011 (in Swedish). SLU, Institut för Växtproduktionsekologi, Rapport 23 marts 2011

  13. Hofmann-Schielle C, Jug A, Makeschin F, Rehfuess KE (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. I. Site–growth relationships. For Ecol Manag 121(1–2):41–55

    Article  Google Scholar 

  14. Mortensen J, Nielsen KH, Jorgensen U (1998) Nitrate leaching during establishment of willow (Salix viminalis) on two soil types and at two fertilization levels. Biomass Bioenergy 15(6):457–466

    Article  CAS  Google Scholar 

  15. Alriksson B (1997) Influence of site factors on Salix growth with emphasis on nitrogen response under different soil conditions. Acta universitatis agriculturae Sueciae, Silvestria, 46

    Google Scholar 

  16. Lindroth A, Bath A (1999) Assessment of regional willow coppice yield in Sweden on basis of water availability. Forest Ecol Manage 121(1–2):57–65

    Article  Google Scholar 

  17. Tahvanainen L, Rytkonen VM (1999) Biomass production of Salix viminalis in southern Finland and the effect of soil properties and climate conditions on its production and survival. Biomass Bioenergy 16(2):103–117

    Article  Google Scholar 

  18. Weih M (2004) Intensive short rotation forestry in boreal climates: present and future perspectives. Can J Forest Res-Revue Canadienne de Recherche Forestiere 34(7):1369–1378

    Article  Google Scholar 

  19. Bergkvist P, Ledin S (1998) Stem biomass yields at different planting designs and spacings in willow coppice systems. Biomass Bioenergy 14(2):149–156

    Article  CAS  Google Scholar 

  20. Bullard MJ, Mustill SJ, McMillan SD, Nixon PMI, Carver P, Britt CP (2002) Yield improvements through modification of planting density and harvest frequency in short rotation coppice Salix spp.—1. Yield response in two morphologically diverse varieties. Biomass Bioenergy 22(1):15–25

    Article  Google Scholar 

  21. Nordh NE (2005) Long term changes in stand structure and biomass production in short rotation willow coppice. Doctoral Thesis No 2005:120 Acta Universitatis Agriculturae Sueciae Department of Crop production Ecology, Uppsala

  22. Wilkinson JM, Evans EJ, Bilsborrow PE, Wright C, Hewison WO, Pilbeam DJ (2007) Yield of willow cultivars at different planting densities in a commercial short rotation coppice in the north of England. Biomass Bioenergy 31(7):469–474

    Article  Google Scholar 

  23. Willebrand E, Ledin S, Verwijst T (1993) Willow coppice systems in short-rotation forestry—effects of plant spacing, rotation length and clonal composition on biomass production. Biomass Bioenergy 4(5):323–331

    Article  Google Scholar 

  24. Stolarski M, Szczukowski S, Tworkowski J, Klasa A (2008) Productivity of seven clones of willow coppice in annual and quadrennial cutting cycles. Biomass Bioenergy 32(12):1227–1234

    Article  Google Scholar 

  25. Sage RB (1999) Weed competition in willow coppice crops: the cause and extent of yield losses. Weed Res 39(5):399–411

    Article  Google Scholar 

  26. Karp A, Hanley SJ, Trybush SO, Macalpine W, Pei M, Shield I (2011) Genetic improvement of willow for bioenergy and biofuels free access. J Integr Plant Biol 53(2):151–165

    Article  PubMed  Google Scholar 

  27. Larsson S. (2001) Commercial varieties from the Swedish willow breeding programme. Aspects of Applied Biology 65(Biomass and Energy Crops II University of York 18.-20. December 2001): 193

  28. Lindegaard K, Parfitt R.I., Donaldson G., Hunter T., Dawson W.M., Forbes E.G.A., et al. (2001) Comparative trials of elite Swedish and UK biomass willow varieties. Aspects of Applied Biology 65(Biomass and Energy Crops II)

  29. Sevel L, Nord-Larsen T, Raulund-Rasmussen K (2012) Biomass production of four willow clones grown as short rotation coppice on two soil types in Denmark. Biomass Bioenergy 46:664–672

    Article  Google Scholar 

  30. Adegbidi HG, Briggs RD, Volk TA, White EH, Abrahamson LP (2003) Effect of organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil chemical characteristics. Biomass Bioenergy 25(4):389–398

    Article  Google Scholar 

  31. Kopp RF, Abrahamson LP, White EH, Volk TA, Nowak CA, Fillhart RC (2001) Willow biomass production during ten successive annual harvests. Biomass Bioenergy 20(1):1–7

    Article  CAS  Google Scholar 

  32. Aronsson PG, Bergstrom LF (2001) Nitrate leaching from lysimeter-grown short-rotation willow coppice in relation to N-application, irrigation and soil type. Biomass Bioenergy 21(3):155–164

    Article  CAS  Google Scholar 

  33. Lærke P, Jørgensen U, Kjeldsen J (2010) Udbytte af pil fra 15 års forsøg (in Danish). Plantekongres 2010 Conference proceedings: 232–3

  34. Quaye AK, Volk TA, Hafner S, Leopold DJ, Schirmer C (2011) Impacts of paper sludge and manure on soil and biomass production of willow. Biomass Bioenergy 35(7):2796–2806

    Article  Google Scholar 

  35. Labrecque M, Teodorescu TI, Daigle S (1998) Early performance and nutrition of two willow species in short-rotation intensive culture fertilized with wastewater sludge and impact on the soil characteristics. Can J For Res-Revue Canadienne de Recherche Forestiere 28(11):1621–1635

    Article  Google Scholar 

  36. Labrecque M, Teodorescu TI (2001) Influence of plantation site and wastewater sludge fertilization on the performance and foliar nutrient status of two willow species grown under SRIC in southern Quebec (Canada). Forest Ecol Manage 150(3):223–239

    Article  Google Scholar 

  37. Labrecque M, Teodorescu TI, Daigle S (1997) Biomass productivity and wood energy of Salix species after 2 years growth in SRIC fertilized with wastewater sludge. Biomass Bioenergy 12(6):409–417

    Article  CAS  Google Scholar 

  38. Danfors B, Ledin S, Rosenqvist H (1997) Energiskogsodling: Handledning för odlare (in Swedish). Jordbrukstekniska Institutet

  39. Dansk Landbrugsrådgivning (2011) Dyrkningsvejledning, Pil (in Danish). Dansk Landbrugsrådgivning.https://www.landbrugsinfo.dk/planteavl/afgroeder/energiafgroeder/pil-energiskov/sider/startside.aspx. Accessed 10 Jan 2011

  40. DEFRA (2004) Best practice guidelines for applicants to Defra’s energy crops scheme—growing short rotation coppice. Defra Publication, London

  41. Gustafsson J, Larsson S, Nordh NE (2007) Manual för Salixodlare Framställd av Lantmännen Agroenergi AB/Salix. Lantmännen Agroenergi, Örebro

    Google Scholar 

  42. Landskontoret for planteavl (1996) Dyrkningsvejledning for pil. Landskontoret for planteavl, Udkærsvej 15, 8200 Århus N

  43. Sennerby-Forsse L (1986) Energiskog - Handbok i praktisk odling. Avdelningen för energiskog, Institutionen för ekologi och miljövård

  44. Adegbidi HG, Briggs RD (2003) Nitrogen mineralization of sewage sludge and composted poultry manure applied to willow in a greenhouse experiment. Biomass Bioenergy 25(6):665–673

    Article  CAS  Google Scholar 

  45. Britt C, Bullard MJ, Hickman G, Johnson P, King J, Nicholson F, et al. (2002) Bioenergy crops and bioremediation—a review. Contract report by ADAS for the Department for Food, Environment and Rural Affairs

  46. Rosenqvist H, Aronsson P, Hasselgren K, Perttu K (1997) Economics of using municipal wastewater irrigation of willow coppice crops. Biomass Bioenergy 12(1):1–8

    Article  Google Scholar 

  47. Dimitriou I, Aronsson P (2011) Wastewater and sewage sludge application to willows and poplars grown in lysimeters—plant response and treatment efficiency. Biomass Bioenergy 35(1):161–170

    Article  CAS  Google Scholar 

  48. Nielsen KH (1994) Environmental aspects of using waste-waters and sludges in energy forest cultivation. Biomass Bioenergy 6(1–2):123–132

    Article  Google Scholar 

  49. Hoeppner JW, Entz MH, McConkey BG, Zentner RP, Nagy CN (2005) Energy use an efficiency in two Canadian organic and conventional crop production systems. Rene Agr Food Syst 21(1):60–67

    Article  Google Scholar 

  50. Dimitriou L, Aronsson P (2004) Nitrogen leaching from short-rotation willow coppice after intensive irrigation with wastewater. Biomass Bioenergy 26(5):433–441

    Article  CAS  Google Scholar 

  51. Hasselgren K (1998) Use of municipal waste products in energy forestry: highlights from 15 years of experience. Biomass Bioenergy 15(1):71–74

    Article  CAS  Google Scholar 

  52. Perttu KL (1999) Environmental and hygienic aspects of willow coppice in Sweden. Biomass Bioenergy 16(4):291–297

    Article  Google Scholar 

  53. Verwijst T, Telenius B (1999) Biomass estimation procedures in short rotation forestry. Forest Ecol Manage 121(1–2):137–146

    Article  Google Scholar 

  54. Evans S, Baldwin M, Henshall P, Matthews R, Morgan G, Poole J, et al (2007) Yield modesl for energy: coppice of poplar and willow. Volume A—SRC Empirical Models. Final report to DTI. Forest Research, Alice Holt Lodge, Farnham, UK; 2007. Report No.: (B/W2/00624/00/00 URN)

  55. Sevel L, Ingerslev M, Nord-Larsen T, Jørgensen U, Holm PE, Schelde K, Raulund-Rasmussen K (2013) Fertilization of SRC willow, II: leaching and element balances. Bioenerg Res doi: 10.1007/s12155-013-9370-z

  56. Danish Metrological Institute. Klimanormaler for Danmark (in Danish). DMI (2011) [cited 2011 Jul 7] http://www.dmi.dk/dmi/index/danmark/klimanormaler.htm

  57. Soil Survey Staff (1999) Keys to soil taxonomy, 8th edn. Pocahontas Press, Inc., Blacksburg

    Google Scholar 

  58. Engqvist G (2011) Personal communication. Lantmännen SW seed AB Onsjövägen 13, Svalöv, Sweden www.swseed.com

  59. Agroenergi L (2011) Willow varieties 2010. Lantmännen Agroenergi, Huskvarna

    Google Scholar 

  60. Lantmännen SW seed AB (2011) Willow varieties 2011. Lantmännen SW seed AB Onsjövägen 13, Svalöv

    Google Scholar 

  61. Nordh NE, Verwijst T (2004) Above-ground biomass assessments and first cutting cycle production in willow (Salix sp.) coppice—a comparison between destructive and non-destructive methods. Biomass Bioenergy 27(1):1–8

    Article  Google Scholar 

  62. Telenius BF (1997) Implications of vertical distribution and within-stand variation in moisture content for biomass estimation of some willow and hybrid poplar clones. Scand J For Res 12(4):336–339

    Article  Google Scholar 

  63. Telenius B, Verwijst T (1995) The influence of allometric variation, vertical biomass distribution and sampling procedure on biomass estimates in commercial short-rotation forests. Bioresour Technol 51(2–3):247–253

    Article  Google Scholar 

  64. SAS Institute Inc. (2008) SAS® 9.2 Software. Copyright (c) 2002–2008 by SAS Institute Inc., Cary, NC, USA

  65. Springob G, Kirchmann H (2003) Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biol Biochem 35(4):629–632

    Article  CAS  Google Scholar 

  66. Ericsson T (1994) Nutrient cycling in energy forest plantations. Biomass Bioenergy 6(1–2):115–121

    Article  CAS  Google Scholar 

  67. Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrate from temperate forests—effects of air pollution and forest management. Environ Rev 14(1):1–57

    Article  CAS  Google Scholar 

  68. Arevalo CBM, Volk TA, Bevilacqua E, Abrahamson L (2007) Development and validation of aboveground biomass estimations for four Salix clones in central New York. Biomass Bioenergy 31(1):1–12

    Article  Google Scholar 

  69. Labrecque M, Teodorescu TI (2005) Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass Bioenergy 29(1):1–9

    Article  Google Scholar 

  70. Luo ZB, Polle A (2009) Wood composition and energy content in a poplar short rotation plantation on fertilized agricultural land in a future CO2 atmosphere. Glob Chang Biol 15(1):38–47

    Article  Google Scholar 

  71. Pitre FE, Pollet B, Lafarguette F, Cooke JEK, Mackay JJ, Lapierre C (2007) Effects of increased nitrogen supply on the lignification of poplar wood. J Agric Food Chem 55(25):10306–10314

    Article  CAS  PubMed  Google Scholar 

  72. Spaner D, Todd AG, McKenzie DB (2001) The effect of seeding rate and nitrogen fertilization on barley yield and yield components in a cool maritime climate. J Agron Crop Sci 187(2):105–110

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by HedeDanmark A/S, Dalgas Innovation the Danish Agency for Science Technology and Innovation and Department of Geoscience and Natural Resource Management (University of Copenhagen). We greatly acknowledge Nordic Biomass for their contribution to the field work including establishment, fertilization, and harvesting of the fertilization experiments. Yara Denmark is thanked for supply of the NPK fertilizer, and Jens Bonderup Kjeldsen and Lise Bak for help during field and lab work. Lastly, we thank Johannes Falk and Vibe Gro for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisbeth Sevel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevel, L., Nord-Larsen, T., Ingerslev, M. et al. Fertilization of SRC Willow, I: Biomass Production Response. Bioenerg. Res. 7, 319–328 (2014). https://doi.org/10.1007/s12155-013-9371-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9371-y

Keywords

Navigation