Skip to main content
Log in

Acetone–Butanol–Ethanol Production by Clostridium acetobutylicum ATCC 824 Using Sago Pith Residues Hydrolysate

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Sago pith residues (58 % starch, 23 % cellulose, 9.2 % hemicellulose, and 4 % lignin) are one of the abundant lignocellulosic residues generated after starch extraction process in sago mill. In this study, fermentable sugars from enzymatic hydrolysis of sago pith residues were converted to acetone–butanol–ethanol (ABE) by Clostridium acetobutylicum ATCC 824. With an initial concentration of 30 g/L of concentrated sago pith residues hydrolysate containing 23 g/L of glucose and 4.58 g/L of cellobiose, 4.22 ± 0.17 g/L of ABE were produced after 72 h of fermentation with yield and productivity of 0.20 g/g glucose and 0.06 g/L/h, respectively. Results are in agreement when synthetic glucose was used as a carbon source. Increasing sago pith residue hydrolysate to 50 g/L (containing 40 g/L glucose) and supplementing with 0.5 g/L yeast extract, approximately 8.84 ± 0.20 g/L of ABE (5.41 ± 0.10 g/L of butanol) were produced with productivity and yield of 0.12 g/L/h and 0.30 g/g glucose respectively, providing a 52 % improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABE:

Acetone–butanol–ethanol

DNS:

Dinitrosalicylic acid

FID:

Flame ionization detector

HMF:

Hydroxymethyl furfural

HPLC:

High-performance liquid chromatography

OPEFB:

Oil palm empty fruit bunch

RCM:

Reinforced Clostridial Medium

References

  1. Abd-Aziz S (2002) Sago starch and its utilization. J Biosci Bioeng 9(6):525–529

    Google Scholar 

  2. Abd-Alla MH, El-Enany AWE (2012) Production of acetone–butanol–ethanol from spoilage date palm (Phoenix dactylifera L.) fruits by mixed culture of Clostridium acetobutylicum and Bacillus subtilis. Biomass Bioenerg 42:172–178

    Article  CAS  Google Scholar 

  3. Al-Shorgani NKN, Ali E, Kalil MS, Yusoff WMW (2011) The effect of different carbon sources on biobutanol production using Clostridium saccharoperbutylacetonicum N1-4. Biotechnol 10(3):280–285

    Article  CAS  Google Scholar 

  4. Apun K, Salleh MA, Jong BC (2000) Screening and isolation of a cellulolytic and amylolytic Bacillus from sago pith waste. J Gen Appl Microbiol 46:263–267

    Article  PubMed  CAS  Google Scholar 

  5. Berezina OV, Brandt A, Yarotsky S, Schwarz WH, Zverlov VV (2009) Isolation of a new butanol-producing Clostridium strain: high level of hemicellulosic activity and structure of solventogenesis genes of a new Clostridium saccharobutylicum isolate. Syst Appl Microbiol 32:449–459

    Article  PubMed  CAS  Google Scholar 

  6. Bujang KB, Ahmad FB (2000) Country report of Malaysia: production and utilization of sago starch in Malaysia. The International Sago Seminar, Bogor, Indonesia, pp 1–8

    Google Scholar 

  7. Bujang KB, Apun K, Salleh MA (1996) A study in the production and bioconversion of sago waste. In Proceedings of the Sixth International Sago Symposium on Sago: the future source of food and feed. 9–12 Dec 1996, Universitas Riau, Pekanbaru, Sumatra, Republic of Indonesia

  8. Bujang KB, Yusop MA, Ang SY (2004) Effects of aeration and agitation in the systematic treatment of sago effluent. The 26th Symposium of the Malaysian Society for Microbiology. Langkawi, Kedah, p 62

    Google Scholar 

  9. Ezeji T, Milne C, Price ND, Blaschek HP (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85:1697–1712

    Article  PubMed  CAS  Google Scholar 

  10. Fond O, Matta-Ammouri G, Petitdemange H, Engasser JM (1985) The role of acids on the production of acetone and butanol by Clostridium acetobutylicum. Appl Microbiol Biotechnol 22:195–200

    Article  CAS  Google Scholar 

  11. Geng Q, Park C (1993) Controlled-pH batch butanol–acetone fermentation by low acid producing Clostridium acetobutylicum B18. Biotechnol Lett 15:421–426

    Article  CAS  Google Scholar 

  12. Haska N (2002) The utilization of the fibrous residue of sago palm as a substrate for the cultivation of edible mushrooms. In: Kainuma K, Okazaki M, Toyoda Y, Cecil JE (eds) Proceedings of the International Symposium on Sago: New Frontiers of Sago Palm Studies. Universal Academy Press, Tokyo, pp 133–140

    Google Scholar 

  13. Ibrahim MF, Abd-Aziz S, Razak MNA, Phang LY, Hassan MA (2012) Oil palm empty fruit bunch as alternative substrate for acetone–butanol–ethanol production by Clostridium butyricum EB6. Appl Biochem Biotechnol 166:1615–1625

    Article  PubMed  CAS  Google Scholar 

  14. Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloaca IIT-BT 08. Process Biochem 35:589–593

    Article  CAS  Google Scholar 

  15. Kumaran S, Sastry CA, Vikineswary S (1997) Laccase, cellulose and xylanase activities during growth of Pleurotus sajor-caju on sago hampas. World J Microbiol Biotechnol 13(1):43–49

    Article  CAS  Google Scholar 

  16. Kumoro AC, Ngoh GC, Hasan M, Ong CH, Teoh EC (2008) Conversion of fibrous sago (Metroxylon sagu) waste into fermentable sugar via acid and enzymatic hydrolysis. Asian J Sci Res 1:412–420

    Article  CAS  Google Scholar 

  17. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101:209–228

    Article  PubMed  CAS  Google Scholar 

  18. Lee J, Seo E, Kweon DH, Park K, Jin YS (2009) Fermentation of rice bran and defatted rice bran for butanol production using Clostridium beijerinckii NCIMB 8052. J Microbiol Biotechnol 19:482–490

    Article  PubMed  CAS  Google Scholar 

  19. Liu Z, Ying Y, Li F, Ma C, Xu P (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37:495–501

    Article  PubMed  CAS  Google Scholar 

  20. Maddox IS, Steiner E, Hirsch S, Wessner S, Gutierrez NA, Gapes JR et al (2000) The cause of “acid crash” and “acidogenic fermentations” during the batch acetone–butanol–ethanol (ABE) fermentation process. J Mol Microbiol Biotechnol 2(1):95–100

    PubMed  CAS  Google Scholar 

  21. Madihah MS, Ariff AB, Sahaid KM, Suraini AA, Karim MIA (2001) Direct fermentation of gelatinized sago starch to acetone–butanol–ethanol by Clostridium acetobutylicum. World J Microbiol Biotechnol 17:567–576

    Article  CAS  Google Scholar 

  22. Mansfield SD, Meder R (2003) Cellulose hydrolysis—the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 10:159–169

    Article  CAS  Google Scholar 

  23. Miller GL (1959) Use of DNS reagent for the determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  24. Monot F, Martin JR, Petitdemange H, Gay R (1982) Acetone and butanol production by Clostridium acetobutylicum in a synthetic medium. Appl Environ Microbiol 44(6):1318–1324

    PubMed  CAS  Google Scholar 

  25. Monot F, Engasser JM, Petitdemange H (1984) Influence of pH and undissocited butyric acid on production of acetone and butanol in batch cultures of C. acetobutylicum. Appl Microbiol Biotechnol 19:422–426

    Article  CAS  Google Scholar 

  26. Ozawa T, Takahiro O, Osama N (1996) Hemicelluloses in the fibrous residue of sago palm. Proceeding of Sixth International Sago Symposium, Pekan Baru

    Google Scholar 

  27. Palonen H (2004) Role of lignin in the enzymatic hydrolysis of lignocelluloses. VTT Technol VTT Publi 520:1–42

    CAS  Google Scholar 

  28. Qureshi N, Blaschek HP (1999) Butanol recovery from model solutions/fermentation broth by pervaporation: evaluation of membrane performance. Biomass Bioenerg 17:175–184

    Article  CAS  Google Scholar 

  29. Qureshi N, Blaschek HP (2000) Economics of butanol fermentation using hyper-butanol producing Clostridium beijerinckii BA101. Food Bioprod Process 78:139–144

    Article  Google Scholar 

  30. Qureshi N, Ebener J, Ezeji TC, Dien B, Cotta MA, Blaschek HP (2008) Butanol production by Clostridium beijerinckii BA101. Part I: use of acid and enzyme hydrolysed corn fiber. Bioresour Technol 99:5915–5922

    Article  PubMed  CAS  Google Scholar 

  31. Qureshi N, Saha BC, Hector RE, Cotta MA (2008) Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: production of butanol from hydrolysate using Clostridiun beijierinckii in batch reactors. Biomass Bioenerg 32:1353–1358

    Article  CAS  Google Scholar 

  32. Qureshi N, Saha BC, Hector RE, Dien B, Hughes S, Liu S et al (2010) Production of butanol (a biofuel) from agricultural residues: part II—use of corn stover and switchgrass hydrolysates. Biomass Bioenerg 34(4):566–571

    Article  CAS  Google Scholar 

  33. Sun Z, Liu S (2010) Production of n-butanol from concentrated sugar maple hemicellulosic hydrolysate by Clostridia acetobutylicum ATCC824. Biomass Bioenerg 39:39–47

    Article  Google Scholar 

  34. Ugam J (2011) Pretreatment of sago fibre for maximum fermentable sugars production. Master thesis. Universiti Malaysia Sarawak.

  35. Vikineswary S, Abdullah N, Renuvathani M, Sekaran M, Pandey A, Jones EBG (2005) Productivity of laccase in solid substrate fermentation of selected agro-residues by Pycnoporus sanguineus. J Bioresour Technol 97:171–177

    Article  Google Scholar 

  36. Wang L, Chen H (2011) Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochem 46:604–607

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Universiti Putra Malaysia for financial support throughout this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraini Abd-Aziz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linggang, S., Phang, L.Y., Wasoh, H. et al. Acetone–Butanol–Ethanol Production by Clostridium acetobutylicum ATCC 824 Using Sago Pith Residues Hydrolysate. Bioenerg. Res. 6, 321–328 (2013). https://doi.org/10.1007/s12155-012-9260-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9260-9

Keywords

Navigation