Skip to main content
Log in

Methane Yields and Digestion Dynamics of Press Fluids from Mechanically Dehydrated Maize Silages Using Different Types of Digesters

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The mechanical dehydration of ensiled agricultural crops results in two major products: a fibrous press cake and a press fluid containing mainly easily digestible constituents. This study is aimed at the investigation on methane yields and digestion dynamics of the press fluids from maize silages using different types of digesters. Methane yields investigated in batch experiments account for 390–506 lN CH4/kg volatile solids (VS) with a degree of degradation of the organic matter in the fluid of more than 90%. The investigation of digestion dynamics in a continuously working stirrer tank digester at different levels of retention time and volume load suggests that a stable fermentation of press fluids can only be achieved with retention times of more than 20 days and with volume loads below 2 g VS/l/day. In a continuously working fixed bed digester a steady fermentation could be achieved at a retention time of 8 days and a volume load of 3 g VS/l/day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BBCH:

Biologische Bundesanstalt Bundessortenamt and chemical industry

CF:

Crude fibre

COD:

Chemical oxygen demand

CP:

Crude protein

DM:

Dry matter

EE:

Ether extract

FM:

Fresh matter

FT:

Fermentation time

IFBB:

Integrated generation of solid fuel and biogas from biomass

MY:

Methane yield

NFE:

Nitrogen-free extract

PF:

Press fluid

s.e.:

Standard error

VFA:

Volatile fatty acids

VS:

Volatile solids

W:

Water

References

  1. Agency for Renewable Resources (ed) (2009) Biogas-Messprogramm II—61 Biogasanlagen im Vergleich (Results of the biogas monitoring programme—comparison of 61 biogas plants). Agency for Renewable Resources, Gülzow, Germany

  2. Agency for Renewable Resources (2010) Anbau nachwachsender Rohstoffe in Deutschland (Growing of renewable plant resources in Germany). http://www.nachwachsenderohstoffe.de/service/daten-und-fakten/anbau. Accessed 28 Sept 2010

  3. Amon T, Amon B, Kryvoruchko V, Machmüller A, Hopfner-Sixt K, Bodiroza V et al (2007) Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour Technol 98:3204–3212

    Article  PubMed  CAS  Google Scholar 

  4. Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agric Ecosyst Environ 118:173–182

    Article  CAS  Google Scholar 

  5. Austermann-Haun U (1997) Inbetriebnahme anaerober Festbettreaktoren (Starting up of anaerobic fixed bed digester). Publication of the Institut für Siedlungswasserwirtschaft und Abfalltechnik der Universität Hannover, vol 93. University of Hannover, Germany

  6. Bassler R (1976) Methodenbuch Band III: die chemische untersuchung von futtermitteln, mit ergänzungslieferungen 1983, 1988 und 1993 (Book of methods volume III: chemical analysis of animal feeds, with extensions 1983, 1988 and 1993). VDLUFA-Verlag, Darmstadt

    Google Scholar 

  7. Borja R, Martin A, Alonso V (1992) Influence of the microorganism support on the kinetics of anaerobic fermentation of condensation water from thermally concentrated olive mill wastewater. Biodegradation 3:93–103

    Article  CAS  Google Scholar 

  8. Bühle L, Stülpnagel R, Wachendorf M (2011) Comparative life cycle assessment of the integrated generation of solid fuel and biogas from biomass (IFBB) and whole crop digestion (WCD) in Germany. Biomass Bioenergy 35:363–373.

    Article  Google Scholar 

  9. Fenner H, Barnes HD (1965) Improved method for determining dry matter in silage. J Dairy Sci 48(10):1324–1328

    Article  PubMed  CAS  Google Scholar 

  10. García-Ochoa F, Santos VE, Naval L, Guardiola E, López B (1999) Kinetic model for anaerobic digestion of livestock manure. Enzyme Microb Technol 25:55–60

    Article  Google Scholar 

  11. Ghosh S, Pohland FG (1974) Kinetics of aubstrate assimilation and product formation in anaerobic digestion. J Water Pollut Control Fed 46(4):748–759

    CAS  Google Scholar 

  12. Graß R, Reulein J, Scheffer K, Stülpnagel R, Wachendorf M (2009) Die integrierte biogas- und festbrennstofferzeugung aus ganzpflanzensilagen (The Integrated biogas and solid fuel production from whole crop silages). Ber Landwirtsch 87:43–64

    Google Scholar 

  13. Greul U (1998) VDI-Fortschrittsberichte, Reihe 6: Energietechnik, Nr. 388. Experimentelle Untersuchung feuerungstechnischer NOx-Minderungsverfahren bei der Kohlenstaubverbrennung (VDI Progress reports, series 6: Energy technique, Nr. 388. Experimental investigation on NOx mitigation techniques for the combustion of carbon dust). VDI-Verlag, Düsseldorf, Germany

  14. Günther D (2007) Bewertung verschiedener Materialien hinsichtlich ihrer Eignung als Festbett bei der anaeroben Fermentation von Presssaft aus mechanisch entwässerten Ganzpflanzensilagen (Assessment of various materials concerning their use as fixed bed during anaerobic digestion of press fluid from mechanically dehydrated whole crop silages). Diploma thesis, University of Kassel, Germany

  15. Fernandez I, Nozière P, Michalet-Doreau B (2004) Site and extent of starch digestion of whole-plant maize silages differing in maturity stage and chop length, in dairy cows. Livest Prod Sci 89(2):147–157

    Article  Google Scholar 

  16. Hess M, Barralis G, Bleiholder H, Buhr L, Eggers TH, Hack H et al (1997) Use of the extended BBCH scale—general for the descriptions of the growth stages of mono- and dicotyledonous weed species. Weed Res 37:433–441

    Article  Google Scholar 

  17. Kaltschmitt M, Hartmann H (eds) (2001) Energie aus biomasse—grundlagen, techniken und verfahren. Springer, Berlin

    Google Scholar 

  18. Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A (2004) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22(4):699–734

    Article  Google Scholar 

  19. Lettinga P (2009) Anaerobic degradation, a superior renewable energy generation method. In: Bayerische Landesanstalt für Landwirtschaft (ed) Biogas Science 2009, vol 1. Bayerische Landesanstalt für Landwirtschaft, Freising-Weihenstephan, Germany, pp 21–22

  20. Michauda S, Berneta N, Buffiere P, Roustan M, Moletta R (2002) Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors. Water Res 36:1385–1391

    Article  Google Scholar 

  21. Neureiter M, dos Santos JTP, Lopez CP, Pichler H, Kirchmayr R, Braun R (2005) Effect of silage preparation on methane yields from whole crop maize silages. In: Proceedings of the 4th Int. Symposium Anaerobic Digestion of Solid Waste, Copenhagen, Denmark, pp 109–115

  22. Obernberger I, Brunner T, Bärnthaler G (2006) Chemical properties of solid biofuels—significance and impact. Biomass Bioenergy 30:973–982

    Article  CAS  Google Scholar 

  23. Phipps RH, Sutton JD, Beever DE, Jones AK (2000) The effect of crop maturity on the nutritional value of maize silage for lactating dairy cows. 3. Food intake and milk production. Anim Sci 71:401–409

    CAS  Google Scholar 

  24. Pipyn P, Verstraete W (1981) Lactate and ethanol as intermediates in two-phase anaerobic digestion. Biotechnol Bioeng 23(5):1145–1154

    Article  CAS  Google Scholar 

  25. Richter F, Graß R, Fricke T, Zerr W, Wachendorf M (2009) Utilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass. II. Effects of hydrothermal conditioning and mechanical dehydration on anaerobic digestion of press fluids. Grass Forage Sci 64:354–363

    Article  Google Scholar 

  26. Richter F, Fricke T, Wachendorf M (2010) Utilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass. III. Effects of hydrothermal conditioning and mechanical dehydration on solid fuel properties and on energy and green house gas balances. Grass Forage Sci 65:185–199

    Article  Google Scholar 

  27. Stülpnagel R,Wiest W, KloseW, Wachendorf M (2008) Fortschritte im Bereich der energetischen Wandlung von landwirtschaftlichen Kulturpflanzen durch erweiterte Analytik des Erntegutes (Progress in the area of energetic conversion of agricultural crops by enhanced analysis of the harvest). In: Energetische Nutzung von Biomassen. DGMK Tagungsbericht, 2008–2. DGMK, Hamburg, Germany, pp 199–206

  28. Tolera A, Sundstol F, Said AN (1998) The effect of stage of maturity on yield and quality of maize grain and stover. Anim Feed Sci Technol 75(2):157–168

    Article  Google Scholar 

  29. VDI (2004) VDI 4630—Vergärung organischer Stoffe (Fermentation of organic materials). Verein Deutscher Ingenieure, Düsseldorf

    Google Scholar 

  30. Vindis P, Mursec B, Rozman C, Janzekovic M, Cus F (2008) Biogas production with the use of mini digester. J Achiev Mat Manuf Eng 28(1):99–102

    Google Scholar 

  31. Wachendorf M, Richter F, Fricke T, Graß R, Neff R (2009) Utilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass. I. Effects of hydrothermal conditioning and mechanical dehydration on mass flows of organic and mineral plant compounds, and nutrient balances. Grass Forage Sci 64:132–143

    Article  CAS  Google Scholar 

  32. Weiland P (2003a) Biologie der Biogaserzeugung (Biology of biogas production). ZNR Biogastagung, Bad Sassendorf-Ostinghausen, Germany, 2 Apr 2003

  33. Weiland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol 109:263–274

    Article  PubMed  CAS  Google Scholar 

  34. Weiland P (2009) Ergebnisse aus dem aktuellen Biogas-Messprogramm II (Results of the current biogas monitoring II). In: Agency for Renewable Resources (ed) Biogas in der Landwirtschaft—Stand und Perspektiven. Gülzower Fachgepräche, vol 32. Agency for Renewable Resources, Gülzow, Germany, pp 14–25

  35. Weissbach F, Kuhla S (1995) Substance losses in determining the dry matter content of silage and green fodder: arising errors and possibilities of correction. In: Kamphues J, Flachowsky G (eds) Übersichten zur Tierernährung, vol 23. DLG-Verlag, Frankfurt, pp 189–214

    Google Scholar 

  36. Zerr W (2006) Versuchsanlage zur energetischen Beurteilung von Substraten und Kofermentaten für Biogasanlagen (Experimental plant for the energy assessment of fermentation substrates for biogas plants). UWSF—Zeitschrift für Umweltchemie und Ökotoxikologie 18:219–227

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Bühle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bühle, L., Reulein, J., Stülpnagel, R. et al. Methane Yields and Digestion Dynamics of Press Fluids from Mechanically Dehydrated Maize Silages Using Different Types of Digesters. Bioenerg. Res. 5, 294–305 (2012). https://doi.org/10.1007/s12155-011-9127-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9127-5

Keywords

Navigation