Skip to main content
Log in

Stability and alignment of MCC/IMS devices

  • Technical Report
  • Published:
International Journal for Ion Mobility Spectrometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Thekedar B, Szymczak W, Hoellriegl V, Hoeschen C, Oeh U (2009) Investigations on the variability of breath gas sampling using PTR-MS. J Breath Res 3:1–11

    Article  Google Scholar 

  2. Schwarz K, Filipiak W, Amann A (2009) Determining concentration patterns of volatile compounds in exhaled breath by PTR-MS. J Breath Res 3:1–15

    Google Scholar 

  3. Wisthaler A (2004) PTR-MS: a new tool for the rapid detection and quantification of VOCs in air at ultra-trace levels. Institut für Ionenphysik, Leopold-Franzens-Universität Innsbruck, Innsbruck

    Google Scholar 

  4. Lindinger W, Hansel A, Jordan A (1998) On-Line Monitoring of Volatile Organic Compounds at pptv Levels by Means of Proton-Transfer-Reaction Mass Spectrometry ( PTR-MS). - Medical Applications, Food Control and Environmental Research. Int J Mass Spectr Ion Proc 173:191–241

    Article  CAS  Google Scholar 

  5. Lindinger W, Hansel A, Jordan A (1998) Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem Soc Rev 27:347–354

    Article  CAS  Google Scholar 

  6. Smith D, Spanel P, Enderby B, Lenney W, Turner C, Davies SJ (2010) Isoprene levels in the exhaled breath of 200 healthy pupils within the age range 7–18 years studied using SIFT-MS. J Breath Res 4:1–7

    Article  Google Scholar 

  7. Enderby B, Lenney W, Brady M, Emmett C, Spanel P, Smith D (2009) Concentrations of some metabolites in the breath of healthy children aged 7–18 years measured using selected ion flow tube mass spectrometry (SIFT-MS). J Breath Res 3:1–11

    Article  Google Scholar 

  8. Spanel P, Smith D (2008) Quantification of trace levels of the potential cancer biomarkers formaldehyde, acetaldehyde and propanol in breath by SIFT-MS. J Breath Res 2:1–10

    Article  Google Scholar 

  9. Spanel P, Dryahina K, Smith D (2007) The concentration distributions of some metabolites in the exhaled breath of young adults. J Breath Res 1:1–8

    Google Scholar 

  10. Dryahina K, Polasek M, Spanel P (2004) A selected ion flow tube, SIFT, study of the ion chemistry of H3O+, NO+ and O2+• ions with several nitroalkanes in the presence of water vapour. Int J Mass Spectrom 239:57–65

    Article  CAS  Google Scholar 

  11. Ligor M, Ligor T, Bajtarevic A, Ager C, Pienz M, Klieber M, Denz H, Fiegl M, Hilbe W, Weiss W, Lukas P, Jamnig H, Hackl M, Buszewski B, Miekisch W, Schubert J, Amann A (2009) Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry. Clin Chem Lab Med 47(5):550–560

    Article  CAS  Google Scholar 

  12. Buszewski B, Ulanowska A, Ligor T, Denderz N, Amann A (2009) Analysis of exhaled breath from smokers, passive smokers and non-smokers by solid-phase microextraction gas chromatography/mass spectrometry. Biomed Chromatogr 23(5):551–556

    Article  CAS  Google Scholar 

  13. Ligor T, Ligor M, Amann A, Ager C, Bachler M, Dzien A, Buszewski B (2008) The analysis of healthy volunteers’ exhaled breath by the use of solid-phase microextraction and GC-MS. J Breath Res 2:1–8

    Article  Google Scholar 

  14. Schubert JK, Miekisch W, Fuchs P, Scherzer N, Lord H, Pawliszyn J, Mundkowski RG (2007) Determination of antibiotic drug concentrations in circulating human blood by means of solid phase micro-extraction. Clin Chim Acta 386(1–2):57–62

    Article  CAS  Google Scholar 

  15. Baumbach JI (2006) Process analysis using ion mobility spectrometry. Anal Bioanal Chem 384(5):1059–1070

    Article  CAS  Google Scholar 

  16. Jünger M, Bödeker B, Baumbach JI (2010) Peak assignment in multi-capillary column—ion mobility spectrometry using comparative studies with gas chromatography—mass spectrometry for exhalred breath analysis. Anal Bioanal Chem 396(1):471–482

    Article  Google Scholar 

  17. Maddula S, Blank L, Schmid A, Baumbach JI (2009) Detection of volatile metabolites of Escherichia coli by multi capillary column coupled ion mobility spectrometry. Anal Bioanal Chem 394(3):791–800

    Article  CAS  Google Scholar 

  18. Baumbach JI (2009) Ion Mobility Spectrometry coupled with Multi-Capillary Columns for Metabolic Profiling of Human Breath. J Breath Res 3:1–16

    Article  Google Scholar 

  19. Bödeker B, Vautz W, Baumbach JI (2008) Peak Comparison in MCC/IMS—Data—Searching for potential biomarkers in human breath data. Int J Ion Mobil Spec 11(1):89–93

    Article  Google Scholar 

  20. Baumbach JI, Westhoff M (2006) Ion mobility spectrometry to detect lung cancer and airway infections. Spectrosc Eur 18(6):22–27

    CAS  Google Scholar 

  21. Borsdorf H, Mayer T, Zarejousheghani M, Eiceman GA (2011) Recent Developments in Ion Mobility Spectrometry. Appl Spectrosc Rev 46(6):472–521. doi:10.1080/05704928.2011.582658

    Article  Google Scholar 

  22. Eiceman GA, Karpas Z (2005) Ion Mobility Spectrometry, 2nd edn. CRC, Boca Raton

    Book  Google Scholar 

  23. Perl T, Bödecker B, Jünger M, Nolte J, Vautz W (2010) Alignment of retention time obtained from multicapillary column gas chromatography used for VOC analysis with ion mobility spectrometry. Anal Bioanal Chem 397(6):2385–2394

    Article  CAS  Google Scholar 

  24. Viitanen AK, Mattila T, Makela JM, Marjamaki M, Anttalainen O, Keskinen J (2008) Experimental study of the effect of temperature on ion cluster formation using ion mobility spectrometry. Atmos Res 90(2–4):115–124

    Article  CAS  Google Scholar 

  25. Barnett DA, Belford M, Dunyach J-J, Purves RW (2007) Characterization of a Temperature-Controlled FAIMS System. J Am Soc Mass Spectr 18(9):1653–1663

    Article  CAS  Google Scholar 

  26. Jia J, Guo HY, Gao XG, He XL, Li JP (2006) Effects of drift tube temperature on ion mobility spectra. Chin J Anal Chem 34(12):1783–1786

    CAS  Google Scholar 

  27. Tabrizchi M (2004) Temperature effects on resolution in ion mobility spectrometry. Talanta 62(1):65–70

    Article  CAS  Google Scholar 

  28. Tabrizchi M (2002) Temperature Corrections for Ion Mobility Spectrometry. Int J Ion Mobil Spec 5(1):59–62

    CAS  Google Scholar 

  29. Ewing RG, Miller CJ (2001) The effects of temperature on the detection of volatile vapors emitted from explosives using ion mobility spectrometry. Int J Ion Mobil Spec 3(1):56

    Google Scholar 

  30. Eiceman GA, Nazarov EG, Rodriguez JE (2001) Chemical class information in ion mobility spectra at low and elevated temperatures. Anal Chim Acta 433:53–70

    Article  CAS  Google Scholar 

  31. Eiceman GA, Nazarov EG, Rodriguez JE, Bergloff JF (1998) Positive Reactant Ion Chemistry for Analytical, High Temperature Ion Mobility Spectrometry (IMS): Effects of Electric Field of the Drift Tube and Moisture, Temperature, and Flow of the Drift Gas. Int J Ion Mobil Spec 1(1):28–37

    CAS  Google Scholar 

  32. Chen YH, Hill HH Jr, Wittmer DP (1996) Thermal effects on electrospray ionization ion mobility spectrometry. Int J Mass Spectr Ion Proc 154:1–13

    Article  CAS  Google Scholar 

  33. Eiceman G, Nazarov E, Rodriguez J, Stone J (2001) Analysis of a drift tube at ambient pressure: Models and precise measurements in ion mobility spectrometry. Rev Sci Instrum 72(9):3610–3621

    Article  CAS  Google Scholar 

  34. Borsdorf H, Mayer T (2010) Electric field dependence of ion mobilities of aromatic compounds with different ionic mass and different functional groups. Int J Ion Mobil Spec 13(3–4):103–108

    Article  CAS  Google Scholar 

  35. Soppart O, Baumbach JI (2000) Comparison of electric fields within drift tubes for ion mobility spectrometry. Meas Sci Technol 11(10):1473–1479

    Article  CAS  Google Scholar 

  36. Guevremont R, Purves R (2005) Comparison of experimental and calculated peak shapes for three cylindrical geometry FAIMS prototypes of differing electrode diameters. J Am Soc Mass Spectr 16(3):349–362

    Article  CAS  Google Scholar 

  37. Young D, Eiceman GA, Breach J, Brittain AH, Thomas CLP (2002) Automated control and optimisation of ion mobility spectrometry responses using a sheath-flow inlet. Anal Chim Acta 463(2):143–154

    Article  CAS  Google Scholar 

  38. Bödeker B, Baumbach J (2009) Analytical description of IMS-signals. Int J Ion Mobil Spec 12(3):103–108. doi:10.1007/s12127-009-0024-y

    Article  Google Scholar 

  39. Bödeker B, Vautz W, Baumbach JI (2008) Peak Finding and Referencing in MCC/IMS—Data. Int J Ion Mobil Spec 11(1–4):83–88

    Article  Google Scholar 

  40. Bödeker B, Vautz W, Baumbach JI (2008) Visualisation of MCC/IMS—Data. Int J Ion Mobil Spec 11(1):77–82

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the Ministry of Education Science and Technology (MEST) of the Republic of Korea is acknowledged thankfully. Part of the work of this paper has been supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center (Sonderforschungsberiech) SFB 876 “Providing Information by Resource-Constrained Analysis”, project TB1 “Resource-Constrained Analysis of Spectrometry Data”.

In addition, the work was supported partly by the German Federal Ministry of Economics and Technology based on a decision of the German Bundestag within the project KF2368102AKO.

R. Cumeras gratefully acknowledges support from FPI Fellowship (BES-2008-005267) by the Spanish Ministry of Science and Innovation MICINN-TEC2007-67962-C04 and MICIIN-TEC2010-21357-C05 projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Cumeras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cumeras, R., Schneider, T., Favrod, P. et al. Stability and alignment of MCC/IMS devices. Int. J. Ion Mobil. Spec. 15, 41–46 (2012). https://doi.org/10.1007/s12127-012-0088-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-012-0088-y

Keywords

Navigation