Skip to main content
Log in

Backbone and side-chain 1H, 13C, and 15N chemical shift assignments for the apo-form of the lytic polysaccharide monooxygenase NcLPMO9C

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

The apo-form of the 23.3 kDa catalytic domain of the AA9 family lytic polysaccharide monooxygenase NcLPMO9C from Neurospora crassa has been isotopically labeled and recombinantly expressed in Pichia pastoris. In this paper, we report the 1H, 13C, and 15N chemical shift assignments of this LPMO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aachmann FL, Eijsink VGH, Vaaje-Kolstad G (2011) 1H, 13C, 15N resonance assignment of the chitin-binding protein CBP21 from Serratia marcescens. Biomol NMR Assign 5:117–119. doi:10.1007/s12104-010-9281-2

    Article  Google Scholar 

  • Aachmann FL, Sørlie M, Skjåk-Bræk G et al (2012) NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc Natl Acad Sci USA 109:18779–18784. doi:10.1073/pnas.1208822109

    Article  ADS  Google Scholar 

  • Agger JW, Isaksen T, Várnai A et al (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci USA. doi:10.1073/pnas.1323629111

    Google Scholar 

  • Beeson WT, Vu VV, Span EA et al (2015) Cellulose degradation by polysaccharide monooxygenases. Annu Rev Biochem 84:923–946. doi:10.1146/annurev-biochem-060614-034439

    Article  Google Scholar 

  • Borisova AS, Isaksen T, Dimarogona M et al (2015) Structural and functional characterization of a lytic polysaccharide monooxygenase with broad substrate specificity. J Biol Chem 290:22955–22969. doi:10.1074/jbc.M115.660183

    Article  Google Scholar 

  • Courtade G, Balzer S, Forsberg Z et al (2014) 1H, 13C, 15N resonance assignment of the chitin-active lytic polysaccharide monooxygenase BlLPMO10A from Bacillus licheniformis. Biomol NMR Assign. doi:10.1007/s12104-014-9575-x

    Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handook. Springer, New York, pp 571–607

    Chapter  Google Scholar 

  • Hemsworth GR, Davies GJ, Walton PH (2013) Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr Opin Struct Biol 23:660–668. doi:10.1016/j.sbi.2013.05.006

    Article  Google Scholar 

  • Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122–126. doi:10.1038/nchembio.1417

    Article  Google Scholar 

  • Hemsworth GR, Johnston EM, Davies GJ, Walton PH (2015) Lytic polysaccharide monooxygenases in biomass conversion. Trends Biotechnol 33:747–761. doi:10.1016/j.tibtech.2015.09.006

    Article  Google Scholar 

  • Isaksen T, Westereng B, Aachmann FL et al (2013) A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem 289:2632–2642. doi:10.1074/jbc.M113.530196

    Article  Google Scholar 

  • Keller R (2004) The computer aided resonance assignment tutorial, 1st edn. CANTINA Verlag, Goldau

    Google Scholar 

  • Kim S, Ståhlberg J, Sandgren M et al (2014) Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc Natl Acad Sci USA 111:149–154. doi:10.1073/pnas.1316609111

    Article  ADS  Google Scholar 

  • Kittl R, Kracher D, Burgstaller D et al (2012) Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnol Biofuels 5:79. doi:10.1186/1754-6834-5-79

    Article  Google Scholar 

  • Levasseur A, Drula E, Lombard V et al (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41. doi:10.1186/1754-6834-6-41

    Article  Google Scholar 

  • Lo Leggio L, Simmons TJ, Poulsen JN et al (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6:1–9. doi:10.1038/ncomms6961

    Article  Google Scholar 

  • Phillips CM, Beeson WT, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6:1399–1406. doi:10.1021/cb200351y

    Article  Google Scholar 

  • Pickford AR, O’Leary JM (2004) Isotopic labeling of recombinant proteins from the methylotrophic yeast Pichia pastoris. Methods Mol Biol 278:17–33. doi:10.1385/1-59259-809-9:017

    Google Scholar 

  • Quinlan RJ, Sweeney MD, Lo Leggio L et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108:15079–15084. doi:10.1073/pnas.1105776108

    Article  ADS  Google Scholar 

  • Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241. doi:10.1007/s10858-013-9741-y

    Article  Google Scholar 

  • Vaaje-Kolstad G, Horn SJ, van Aalten DMF et al (2005) The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280:28492–28497. doi:10.1074/jbc.M504468200

    Article  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ et al (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222. doi:10.1126/science.1192231

    Article  ADS  Google Scholar 

  • Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195. doi:10.1023/A:1022836027055

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by SO-funds from the Norwegian University of Science and Technology (NTNU) and by the MARPOL project, the Norwegian NMR Platform and a FRINAT Project, all from the Research Council of Norway (Grant Numbers 221576, 226244, and 214613, respectively). The NMR laboratory at Aalborg University is supported by the Obel, SparNord and Carlsberg Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn L. Aachmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courtade, G., Wimmer, R., Dimarogona, M. et al. Backbone and side-chain 1H, 13C, and 15N chemical shift assignments for the apo-form of the lytic polysaccharide monooxygenase NcLPMO9C. Biomol NMR Assign 10, 277–280 (2016). https://doi.org/10.1007/s12104-016-9683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-016-9683-x

Keywords

Navigation