1.
Aberdeen D (2003) A (revised) survey of approximate methods for solving partially observable markov decision processes. Technical report, National ICT Australia, Canberra
2.
Abraham A (2004) Meta learning evolutionary artificial neural networks. Neurocomputing 56:1–38
CrossRefGoogle Scholar3.
Aihara K, Takabe T, Toyoda M (1990) Chaotic neural networks. Phys Lett A 144(6):333–340
CrossRefMathSciNetGoogle Scholar4.
Astor J, Adami C (2000) A developmental model for the evolution of artificial neural networks. Artif Life 6(3):189–218
CrossRefGoogle Scholar5.
Asuncion A, Newman D (2007) UCI machine learning repository.
http://www.ics.uci.edu/∼mlearn/MLRepository.html
6.
Bakker B, Zhumatiy V, Gruener G, Schmidhuber J (2003) A robot that reinforcement-learns to identify and memorize important previous observations. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS2003), pp 430–435
7.
Baxter J (1992) The evolution of learning algorithms for artificial neural networks. In: Green D, Bossomaier T (eds) Complex systems. IOS Press, Amsterdam
Google Scholar8.
Blynel J, Floreano D (2003) Exploring the t-maze: evolving learning-like robot behaviors using ctrnns. In: Proceedings of the second European workshop on evolutionary robotics, pp 593–604
9.
Bongard J (2002) Evolving modular genetic regulatory networks. In: Proceedings of the 2002 congress on evolutionary computation, pp 1872–1877
10.
Cangelosi A, Parisi D, Nolfi S (1994) Cell division and migration in a ’genotype’ for neural networks. Network 5:497–515
MATHCrossRefGoogle Scholar11.
Chalmers D (1990) The evolution of learning: an experiment in genetic connectionism. In: Proceedings of the 1990 Connectionist Models Summer School, pp 81–90
12.
Dellaert F, Beer R (1996) A developmental model for the evolution of complete autonomous agents. In: Proceedings of the fourth international conference on simulation of adaptive behavior, pp 393–401
13.
D’Silva TRJ, Chrien M, Stanley K, Miikkulainen R (2005). Retaining learned behavior during real-time neuroevolution. In: Proceedings of the artificial intelligence and interactive digital entertainment conference (AIIDE)
14.
Eggenberger-Hotz P, Gomez G, Pfeifer R (2002) Evolving the morphology of a neural network for controlling a foveating retina and its test on a real robot. In: Proceedings of the eighth international workshop on the synthesis and simulation of living systems (Artificial Life VIII), pp 243–251
15.
Floreano D, Durr P, Mattiussi C (2008) Neuroevolution: from architectures to learning. Evol Intell 1(1):47–62
CrossRefGoogle Scholar16.
Floreano D, Mattiussi C (2001) Evolution of spiking neural controllers for autonomous vision-based robots. In: Gomi T (ed) Evolutionary robotics: from intelligent robotics to artificial life. Springer, Tokyo
Google Scholar17.
Funahashi K, Nakamura Y (1993) Approximation of dynamical systems by continuous time recurrent neural networks. Neural Netw 6(6):801–806
CrossRefGoogle Scholar18.
Gers F, Schmidhuber J (2001) Lstm recurrent networks learn simple context free and context sensitive languages. IEEE Trans Neural Netw 12(6):1333–1340
CrossRefGoogle Scholar19.
Gerstner W, Kistler W (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, Cambridge
20.
Gomez F, Miikkulainen R (1999) Solving non-markovian control tasks with neuroevolution. In: Proceedings of the international joint conference on artificial intelligence, pp 1356–1361
21.
Gomez F, Schmidhuber J (2005) Co-evolving recurrent neurons learn deep memory POMDPs. In: Proceedings of the genetic and evolutionary computation conference (GECCO)
22.
Gruau F (1995) Automatic definition of modular neural networks. Adapt Behav 3(2):151–183
CrossRefGoogle Scholar23.
Harp S, Samad T, Guha A (1989) Towards the genetic synthesis of neural networks. In: Proceedings of the third international conference on genetic algorithms, pp 360–369
24.
Haykin S (1999) Neural networks: a comprehensive foundation. Prentice-Hall, Englewood Cliffs
25.
Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
CrossRefGoogle Scholar26.
Hussain T (2004) Generic neural markup language: facilitating the design of theoretical neural network models. In: Proceedings of the IEEE international joint conference on neural networks, pp 235–242
27.
Ichinose N, Aihara K, Kotani M (1993) An analysis on dynamics of pulse propagation networks. In: Proceedings of the international joint conference on neural networks, pp 2315–2318
28.
Izhikevich E (2004) Which model to use for cortical spiking neurons?. IEEE Trans Neural Netw 15(5):1063–1070
CrossRefGoogle Scholar29.
Jakobi N (1995) Harnessing morphogenesis. In: International conference on information processing in cells and tissues, pp 29–41
30.
Jakobi N (1998) Evolutionary robotics and the radical envelope-of-noise hypothesis. Adapt Behav 6(2):325–368
CrossRefGoogle Scholar31.
Kitano H (1990) Designing neural networks using genetic algorithms with graph generation system. Complex Syst 4:461–476
MATHGoogle Scholar32.
Kumar S, Bentley P (2003) Computational embryology: past, present and future. Springer, New York, pp 461–477
Google Scholar33.
Luke S (2002) An evolutionary computation and genetic programming system.
http://cs.gmu.edu/eclab/projects/ecj/docs/
34.
McCallum A (1993) Overcoming incomplete perception with utile distinction memory. In: International conference on machine learning, pp 190–196
35.
Montana D, Davis L (1989) Training feedforward neural networks using genetic algorithms. In: Proceedings of the international joint conference on artificial intelligence (IJCAI), pp 762–767
36.
Montana D, VanWyk E, Brinn M, Montana J, Milligan S (2006) Genomic computing networks learn complex POMDPs. In: Proceedings of the genetic and evolutionary computation conference (GECCO), pp 233–234
37.
Nolfi S, Miglino O, Parisi D (1994) Phenotypic plasticity in evolving neural networks. In: Proceedings of the internation conference from perception to action, pp 146–157
38.
Osana Y, Hattori M, Hagiwara M (1996) Chaotic bidirectional associative memory. In: IEEE international conference on neural networks, pp 816–821
39.
Pearlmutter B (1995) Gradient calculation for dynamic recurrent neural networks: a survey. IEEE Trans Neural Netw 6(5):1212–1228
CrossRefGoogle Scholar40.
Pollack M, Ringuette M (1990) Introducing the Tileworld: experimentally evaluating agent architectures. In: Proceedings of the eighth national conference on artificial intelligence, pp 183–189
41.
Russel S, Norvig P (1995) Artificial intelligence: a modern approach. Prentice-Hall, Englewood Cliffs
42.
Schmidhuber J, Wierstra D, Galiolo M, Gomez F (2007) Training recurrent networks by evolino. Neural Comput 19(3):757–779
MATHCrossRefGoogle Scholar43.
Schmidhuber J, Wierstra D, Gomez F (2005) Evolino: hybrid neuroevolution/optimal linear search for sequence learning. In: Proceedings of the 19th international joint conference on artificial intelligence (IJCAI), pp 853–858
44.
Stanley K, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10(2):99–127
CrossRefGoogle Scholar45.
Stanley K, Miikkulainen R (2003) A taxonomy for artificial embryogeny. Artif Life 9(2):93–130
CrossRefGoogle Scholar46.
Watkins C, Dayan P (1992) Q-learning. Mach Learn 8(3):279–292
MATHGoogle Scholar47.
Whitley D (1989) Applying genetic algorithms to neural network learning. In: Proceedings of the seventh conference of the society of artificial intelligence and simulation of behavior, pp 137–144
48.
Yamauchi B, Beer R (1994) Sequential behavior and learning in evolved dynamical neural networks. Adapt Behav 2(3):219–246
CrossRefGoogle Scholar49.
Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447
CrossRefGoogle Scholar