Ay N, Bertschinger N, Der R, Güttler F, Olbrich E (2008) Predictive information and explorative behavior of autonomous robots. Eur Phys J B 63:329–339

CrossRefBeggs JM (2008) The criticality hypothesis: how local cortical networks might optimize information processing. Phil Trans R Soc A 366(1864):329–343

PubMedCrossRefBeggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23(35):11,167–11,177

Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput, MIT Press 7(6):1129–1159

Bertschinger N, Natschläger T (2004) Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput, MIT Press 16(7):1413–1436

Boedecker J, Obst O, Mayer NM, Asada M (2009) Initialization and self-organized optimization of recurrent neural network connectivity. HFSP J 3(5):340–349

PubMedCrossRefBorst A, Theunissen FE (1999) Information theory and neural coding. Nat Neurosci 2:947–957

PubMedCrossRefBüsing L, Schrauwen B, Legenstein R (2010) Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Comput, MIT Press 22(5):1272–1311

Chialvo DR (2004) Critical brain networks. Physica A 340(4):756–765

CrossRefCover TM, Thomas JA (2006) Elements of information theory. 2nd edn edn. Wiley, New York, NY

Derrida B, Pomeau Y (1986) Random networks of automata: a simple annealed approximation. Europhys Lett 1(2):45–49

CrossRefJaeger H (2001a) The “echo state” approach to analysing and training recurrent neural networks. Tech Rep 148, GMD Report—German National Research Institute for Computer Science

Jaeger H (2001b) Short term memory in echo state networks. Tech Rep 152, GMD—German National Research Institute for Computer Science

Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667):78–80

PubMedCrossRefKlyubin AS, Polani D, Nehaniv CL (2004) Tracking information flow through the environment: simple cases of stigmergy. In: Pollack J, Bedau M, Husbands P, Ikegami T, Watson RA (eds) Proceedings of the 9th international conference on the simulation and synthesis of living systems. MIT Press, Cambridge, MA, pp 563–568

Klyubin AS, Polani D, Nehaniv CL (2005) All else being equal be empowered. In: Capcarrère MS, Freitas AA, Bentley PJ, Johnson CG, Timmis J (eds) Proceedings of the 8th European conference on artificial life, vol 3630. Lecture Notes in Artificial Intelligence. Springer, Heidelberg, pp 744–753

Langton CG (1990) Computation at the edge of chaos: phase transitions and emergent computation. Physica D 42(1-3):12–37

CrossRefLazar A, Pipa G, Triesch J (2009) Sorn: a self-organizing recurrent neural network. Front Comput Neurosci 3(23). doi:

10.3389/neuro.10.023.2009
Legenstein R, Maass W (2007) Edge of chaos and prediction of computational performance for neural circuit models. Neural Networks 20(3):323–334

PubMedCrossRefLegenstein R, Maass W (2007b) What makes a dynamical system computationally powerful? In: Haykin S, Principe JC, Sejnowski T, McWhirter J (eds) New directions in statistical signal processing: from systems to brains, MIT Press, Cambridge, MA, pp 127–154

Levina A, Herrmann JM, Geisel T (2007) Dynamical synapses causing self-organized criticality in neural networks. Nat Phys 3(12):857–860

CrossRefLizier JT, Prokopenko M, Zomaya AY (2007) Detecting non-trivial computation in complex dynamics. In: Almeida e Costa F, Rocha LM, Costa E, Harvey I, Coutinho A (eds) Proceedings of the 9th European conference on artificial life (ECAL 2007), Lisbon, Portugal, vol 4648. Springer, Lecture Notes in Artificial Intelligence, Berlin, Heidelberg, pp 895–904

Lizier JT, Prokopenko M, Zomaya AY (2008a) A framework for the local information dynamics of distributed computation in complex systems.

http://arxiv.org/abs/0811.2690. Accessed 1 Nov 2010

Lizier JT, Prokopenko M, Zomaya AY (2008b) The information dynamics of phase transitions in random boolean networks. In: Bullock S, Noble J, Watson R, Bedau MA (eds) Proceedings of the 11th international conference on the simulation and synthesis of living systems (ALife XI), Winchester, UK. MIT Press, Cambridge, MA, pp 374–381

Lizier JT, Prokopenko M, Zomaya AY (2008c) Local information transfer as a spatiotemporal filter for complex systems. Phys Rev E 77(2):026,110

Lizier JT, Prokopenko M, Zomaya AY (2010) Coherent information structure in complex computation. Theory Biosci. (to appear)

Lukosevicius M, Jaeger H (2009) Reservoir computing approaches to recurrent neural network training. Comput Sci Rev 3(3):127–149

CrossRefLungarella M, Sporns O (2006) Mapping information flow in sensorimotor networks. PLoS Comput Biol 2(10):e144

PubMedCrossRefMaass W, Natschläger T, Markram H (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput, MIT Press 14(11):2531–2560

Mitchell M, Hraber PT, Crutchfield JP (1993) Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Syst 7:89–130

Obst O, Boedecker J, Asada M (2010) Improving recurrent neural network performance using transfer entropy. In: Wong KW, Mendis BSU, Bouzerdoum A (eds) Neural information processing. Models and applications, vol 6444. Lecture Notes in Computer Science, Springer, Heidelberg pp 193–200

Olsson LA, Nehaniv CL, Polani D (2006) From unknown sensors and actuators to actions grounded in sensorimotor perceptions. Connect Sci 18(2):121–144

CrossRefProkopenko M, Gerasimov V, Tanev I (2006) Evolving spatiotemporal coordination in a modular robotic system. In: Nolfi S, Baldassarre G, Calabretta R, Hallam JCT, Marocco D, Meyer JA, Miglino O, Parisi D (eds) From animals to animats 9, 9th international conference on simulation of adaptive behavior, SAB 2006, vol 4095. Springer, Lecture Notes in Computer Science, Heidelberg, pp 558–569

Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85(2):461–464

PubMedCrossRefShannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana, IL

Sporns O, Lungarella M (2006) Evolving coordinated behavior by maximizing information structure. In: Rocha LM, Yaeger LS, Bedau MA, Floreano D, Goldstone RL, Vespignani A (eds) Proceedings of the 10th international conference on the simulation and synthesis of living systems, MIT Press, Cambridge, pp 323–329

Sprott JC (2003) Chaos and time-series analysis. Oxford University Press, Oxford. Accessed 1 Nov 2010

Sprott JC (2004) Numerical calculation of largest Lyapunov exponent.

http://sprott.physics.wisc.edu/chaos/lyapexp.htm
Strong S, Koberle R, van Steveninck R, Bialek W (1998) Entropy and information in neural spike trains. Phys Rev Lett 80:197–200

CrossRefTang A, Jackson D (2008) A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. J Neurosci 28:505–518

PubMedCrossRefTang A, Honey C, Hobbs J, Sher A, Litke A, Sporns O, Beggs J (2008) Information flow in local cortical networks is not democratic. BMC Neurosci 9(Suppl 1):O3.

http://www.biomedcentral.com/1471-2202/9/S1/O3. doi:

10.1186/1471-2202-9-S1-O3
Triesch J (2005) A gradient rule for the plasticity of a neuron’s intrinsic excitability. In: Duch W, Kacprzyk J, Oja E, Zadrozny S (eds) Proceedings of the international conference on artificial neural networks (ICANN 2005). Springer, Lecture Notes in Computer Science, Heidelberg, pp 65–70

Zhou D, Sun Y, Rangan AV, Cai D (2010) Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type. J Comput Neurosci 28:229–245

PubMedCrossRef