, Volume 82, Issue 1, pp 97-109
Date: 05 Jan 2014

Ultrashort laser pulse–matter interaction: Implications for high energy materials

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The interaction of ultrashort [nanosecond (ns)/picosecond (ps)/femtosecond (fs)] pulses with materials is an exhaustive area of research with underlying, and often extremely rich, physics along with a plethora of applications evolving from it. High-energy materials (HEMs) are chemical compounds or mixture of compounds which, under suitable initiation, undergoes a very rapid exothermic and self-propagating decomposition. Herein, we describe the interaction of laser pulses with materials and its implications for studies on HEMs in four parts: (a) ns and fs laser-induced breakdown spectroscopic (LIBS) studies of HEMs towards understanding the molecular dynamics and discrimination, (b) ps/fs pulses interaction with metallic solids towards the production of nanoparticles, nanostructures and their utility in identifying explosive molecules using surface-enhanced Raman scattering studies, (c) interaction of laser pulses with the bulk and surface of glasses and polymers producing micro- and nanostructures for microfluidic/lab-on-a-chip applications, and (d) ultrafast spectroscopic studies for comprehending the excited state dynamics towards elucidation of vibrational dynamics in HEMs. Several applications resulting from these interactions will be discussed in detail.