Skip to main content
Log in

A procedure to construct exact solutions of nonlinear evolution equations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we implemented the functional variable method for the exact solutions of the Zakharov–Kuznetsov-modified equal-width (ZK-MEW), the modified Benjamin–Bona–Mahony (mBBM) and the modified KdV–Kadomtsev–Petviashvili (KdV–KP) equations. By using this scheme, we found some exact solutions of the above-mentioned equations. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions. The functional variable method presents a wider applicability for handling nonlinear wave equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M J Ablowitz and P A Clarkson, Solitons, nonlinear ev olution equations and inv erse scattering transform (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  2. V O Vakhnenko, E J Parkes and A J Morrison, Chaos, Solitons and Fractals 17(4), 683 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. R Hirota, Direct method of finding exact solutions of nonlinear evolution equations, in: Backlund transformations edited by R Bullough and P Caudrey (Springer, Berlin, 1980), p. 1157

    Google Scholar 

  4. W Malfliet and W Hereman, Phys. Scr. 54, 563 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. A M Wazwaz, Int. J. Comput. Math. 82(2), 235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. E Fan, Appl. Math.: (A Journal of Chinese Univ ersities) 16(2), 149 (2001)

    Article  MATH  Google Scholar 

  7. Sirendaoreji, Appl. Math.: (A Journal of Chinese Universities) 19(2), 178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. A M Wazwaz, Math. Comput. Model. 40, 499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. E Yusufoglu and A Bekir, Int. J. Comput. Math. 83(12), 915 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. J H He, Chaos, Solitons and Fractals 30, 700 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. A Bekir and A Boz, Phys. Lett. A372(10), 1619 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. T Ozis and I Aslan, Phys. Lett. A372(47), 7011 (2008)

    Article  MathSciNet  Google Scholar 

  13. S Zhang, W Wang and J-L Tong, Z. Naturforsch. 63a, 663 (2008)

    Google Scholar 

  14. M L Wang, X Li and J Zhang, Phys. Lett. A372(4), 417 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. S Zhang, J-L Tong and W Wang, Phys. Lett. A372, 2254 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. A Bekir, Phys. Lett. A372(19), 3400 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. A Zerarka, S Ouamane and A Attaf, Appl. Math. Comput. 217(7), 2897 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. A Zerarka and S Ouamane, World J. Model. Simulat. 6(2), 150 (2010)

    Google Scholar 

  19. A Zerarka, S Ouamane and A Attaf, Wav es in Random and Complex Media 21(1), 44 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  20. A Bekir and E Akın, J. Adv . Res. Sci. Comput. 3(1), 35 (2011)

    MathSciNet  Google Scholar 

  21. R T Benjamin, J L Bona and J J Mahony, Philos. Trans. R. Soc. London 272, 47 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. T Tso, Chin. J. Math. 24, 327 (1996)

    MathSciNet  MATH  Google Scholar 

  23. E Yusufoglu and A Bekir, Chaos, Solitons and Fractals 38, 1126 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. E Yusufoglu, Phys. Lett. A372, 442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. O P Layeni and A P Akinola, Commun. Nonlin. Sci. Numer. Simulat. 15, 135 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. S Abbasbandy and A Shirzadi, Commun. Nonlin. Sci. Numer. Simulat. 15, 1759 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. J A Pava, C Banquet and M Scialom, Discrete Contin. Dyn. Syst. - Ser. A30(3), 851 (2011)

    Article  MATH  Google Scholar 

  28. A M Wazwaz, Appl. Math. Comput. 204, 162 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. N Taghizadeh, M Mirzazadeh and F Farahrooz, Appl. Math. Model. 35, 3991 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. C M Khalique and K R Adem, Math. Comput. Model. 54, 184 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. A M Wazwaz, Int. J. Comput. Math. 82(6), 699 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. F Tascan, A Bekir and M Koparan, Commun. Nonlin. Sci. Numer. Simul. 14(5), 1810 (2009)

    Article  Google Scholar 

  33. E A Kuznetsov and F Dias, Phys. Rep. 507, 43 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  34. T S Raju, C N Kumar and P K Panigrahi, J. Phys. A: Math. Gen. 38, L271 (2005)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adem Cengiz Çevikel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çevikel, A.C., Bekir, A., Akar, M. et al. A procedure to construct exact solutions of nonlinear evolution equations. Pramana - J Phys 79, 337–344 (2012). https://doi.org/10.1007/s12043-012-0326-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0326-1

Keywords

PACS

Navigation