, Volume 76, Issue 6, pp 973-983
Date: 14 Jun 2011

Influence of drying conditions on the optical and structural properties of sol–gel-derived ZnO nanocrystalline films

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Zinc oxide nanothin films were prepared on glass substrate by sol–gel dip-coating method using zinc acetate dihydrate, methanol, and monoethanolamine as precursor, solvent, and stabilizer, respectively. The relationship between drying conditions and the characteristics of ZnO nanocrystalline films (c-axis orientation, grain size, roughness and optical properties) was studied. The films were dried in an oven at different temperatures and by IR radiation. Then, the films were annealed at 500°C in a furnace. The chemical composition, transmission spectra, structure, and morphology of the samples were studied using infrared (IR) and UV–visible spectroscopy, X-ray diffraction (XRD), and atomic force microscopy (AFM), respectively. The XRD results show that the drying conditions affect the orientation of crystallization along the (0 0 2) plane. AFM images show that the thicknesses of the films decrease from 128 to 93 nm by changing the drying conditions. The photoluminescence (PL) of ZnO nanothin films shows the UV emission at near band edge and broad green radiation at about 465 nm wavelength.