Skip to main content
Log in

Stability of gold cages (Au16 and Au17) at finite temperature

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We have employed ab initio molecular dynamics to investigate the stability of the smallest gold cages, namely Au16 and Au17, at finite temperatures. First, we obtain the ground state structure along with at least 50 distinct isomers for both the clusters. This is followed by the finite temperature simulations of these clusters. Each cluster is maintained at 12 different temperatures for a time period of at least 150 ps. Thus, the total simulation time is of the order of 2.4 ns for each cluster. We observe that the cages are stable at least up to 850 K. Although both clusters melt around the same temperature, i.e. around 900 K, Au17 shows a peak in the heat capacity curve in contrast to the broad peak seen for Au16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P J Dyson and D M P Mingos, Gold: Progress in chemistry, biochemistry and technology edited by H Schmidbaur (Wiley, New York, 1999) p. 511

    Google Scholar 

  2. P Pyykkö, Chem. Rev. 88, 563 (1988)

    Article  Google Scholar 

  3. F-R F Fan and A J Bard, Science 277, 1791 (1997)

    Article  Google Scholar 

  4. J H Teles and S Brode and M Chabanas, Angew. Chem. 99, 2589 (1999)

    Google Scholar 

  5. M Valden, X Lai and D W Goodman, Science 281, 1637 (1998)

    Article  ADS  Google Scholar 

  6. B Yoon, H Häkkinen, U Landman, A S Wörrz, J-M Antonietti, S Abbet, K Judai and U Heiz, Science 307, 403 (2005)

    Article  ADS  Google Scholar 

  7. F Furche, R Ahlrichs, P Weis, C Jacob, T Bierweiler and M M Kappes, J. Chem. Phys. 117, 6982 (2002)

    Article  ADS  Google Scholar 

  8. H Häkkinen, B Yoon and U Landman, J. Phys. Chem. A107, 6168 (2003)

    Google Scholar 

  9. X Xing, B Yoon, U Landman and J H Parks, Phys. Rev. B74, 165423 (2006)

    ADS  Google Scholar 

  10. B Yoon, P Koskinen, B Huber, O Kostko, B V Issendroof, H Häkkinen, M Moseler and U Landman, Chem. Phys. Chem. 8, 157 (2007)

    Google Scholar 

  11. Y-K Han, J. Chem. Phys. 124, 024316 (2006)

    Article  ADS  Google Scholar 

  12. J Wang, G Wang and J Zhao, Phys. Rev. B66, 035418 (2002)

  13. E M Fernandez, J M Soler, I L Garzon and L C Balbas, Phys. Rev. B70, 165403 (2004)

    ADS  Google Scholar 

  14. W Fa, C Luo and J Dong, Phys. Rev. B72, 205428 (2005)

  15. P K Jain, Struc. Chem. 16, 421 (2005)

    Article  Google Scholar 

  16. L Xiao, B Tollberg, X Hu and L Wang, J. Chem. Phys. 124, 114309 (2006)

    Article  ADS  Google Scholar 

  17. W Fa and J Dong, J. Chem. Phys. 124, 114310 (2006)

  18. S Bulusu, X Li, L-S Wang and X-C Zeng, Proc. Natl. Acad. Sci. USA 103, 8326 (2006)

    Article  ADS  Google Scholar 

  19. S Bulusu and X C Zeng, J. Chem. Phys. 125, 154303 (2006)

    Google Scholar 

  20. X-B Li, H-Y Wang, X-D Yang, Z-H Zhu and Y-J Tang, J. Chem. Phys. 126, 084505 (2007)

  21. L Xiao and L Wang, Chem. Phys. Lett. 392, 452 (2004)

    Article  ADS  Google Scholar 

  22. R M Olson, S Varganov, M S Gordon, H Metiu, S Chretien, P Piecuch, K Kowalski, S A Kucharski and M Musial, J. Am. Chem. Soc. 127, 1049 (2005)

    Article  Google Scholar 

  23. E M Fernandez, J M Soler and L C Balas, Phys. Rev. B73, 235433 (2006)

    ADS  Google Scholar 

  24. W Fa and J Dong, Appl. Phys. Lett. 89, 013117 (2006)

  25. M Ji, X Gu, X Li, X Gong, J Li and L-S Wang, Angew. Chem. Int. Ed. 44, 7119 (2005)

    Article  Google Scholar 

  26. A Lechtken, D Schooss, J R Stairs, M N Blom, F Furche, N Morgner, O Kostko, B V Issendorff and M M Kappes, Angew. Chem. Int. Ed. 46, 2944 (2007)

    Article  Google Scholar 

  27. L-M Wang, S Bulusu, H-J Zhai, X-C Zeng and L-S Wang, Angew. Chem. 46, 2915 (2007)

    Article  Google Scholar 

  28. S Zorriasatein, K Joshi and D G Kanhere, J. Chem. Phys. 128, 184314 (2008)

    Article  ADS  Google Scholar 

  29. M Schmidt, R Kusche, B von Issendorff and H Haberland, Nature (London) 393, 238 (1998)

    Article  ADS  Google Scholar 

  30. M Schmidt and H Haberland, C. R. Physique 3, 327 (2002)

    Article  ADS  Google Scholar 

  31. H Haberland, T Hippler, J Dongres, O Kostko, M Schmidt and B von Issendroff, Phys. Rev. Lett. 94, 035701 (2005)

    Google Scholar 

  32. A Shvartsburg and M F Jarrold, Phys. Rev. Lett. 85, 2530 (2000)

    Article  ADS  Google Scholar 

  33. G A Breaux, R C Benirschke, T Sugai, B S Kinnear and M F Jarrold, Phys. Rev. Lett. 91, 215508 (2003)

  34. G A Breaux, D A Hillman, C M Neal, R C Benirschke and M F Jarrold, J. Am. Chem. Soc. 126, 8628 (2004)

    Article  Google Scholar 

  35. G A Breaux, C M Neal, B Cao and M F Jarrold, Phys. Rev. Lett. 94, 173401 (2005)

  36. S Chacko, K Joshi, D G Kanhere and S A Blundell, Phys. Rev. Lett. 92, 135506 (2004)

    Google Scholar 

  37. S Krishnamurty, G A Breaux, S Chacko, D G Kanhere, G A Breaux, C M Neal and M F Jarrold, Phys. Rev. B73, 045406 (2006)

    Google Scholar 

  38. K Joshi, S Krishnamurty and D G Kanhere, Phys. Rev. Lett. 96, 135703 (2006)

    Google Scholar 

  39. S Krishnamurty, G S Shafai, D G Kanhere, B Soulé de Bas and M J Ford, J. Phys. Chem. A111, 42 (2007)

    Google Scholar 

  40. Mal-Soon Lee and D G Kanhere, Phys. Rev. B75, 125427 (2007)

    Google Scholar 

  41. S Krishnamurty, K Joshi, S Zorriasatein and D G Kanhere, J. Chem. Phys. 127, 054308 (2007)

    Google Scholar 

  42. C M Neal, A K Starace, M F Jarrold, K Joshi, S Krishnamurty and D G Kanhere, J. Phys. Chem. C111, 17788 (2007)

    Google Scholar 

  43. E K Yildirim and Z B Guvenc, Modeling Simul. Mater. Sci. Eng. 14, 947 (2006)

    Article  ADS  Google Scholar 

  44. E K Yildirim, M Atis and Z B Guvenc, Phys. Scr. 75, 111 (2007)

    Article  ADS  Google Scholar 

  45. B Soulé de Bas, M J Ford and M B Cortie, J. Phys. Condens. Matter 18, 55 (2006)

    Article  ADS  Google Scholar 

  46. D Vanderbilt, Phys. Rev. B41, 7892 (1990)

    ADS  Google Scholar 

  47. Vienna ab initio simulation package, Technische University at Wien (1999)

  48. S Nośe, Mol. Phys. 52, 255 (1984)

    Article  ADS  Google Scholar 

  49. A M Ferrenberg and R H Swendsen, Phys. Rev. Lett. 61, 2635 (1988)

    Article  ADS  Google Scholar 

  50. P Labastie and R L Whetten, Phys. Rev. Lett. 65, 1567 (1990)

    Article  ADS  Google Scholar 

  51. D G Kanhere, A Vichare and S A Blundell, Reviews in modern quantum chemistry edited by K D Sen (World Scientific, Singapore, 2001)

    Google Scholar 

  52. P Chandrachud, K Joshi and D G Kanhere, Phys. Rev. B76, 235423 (2007)

    Google Scholar 

  53. M Bixon and J Jortner, J. Chem. Phys. 91, 1631 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Kanhere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrachud, P., Joshi, K., Krishnamurty, S. et al. Stability of gold cages (Au16 and Au17) at finite temperature. Pramana - J Phys 72, 845–855 (2009). https://doi.org/10.1007/s12043-009-0076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-009-0076-x

Keywords

PACS Nos

Navigation