Skip to main content

Advertisement

Log in

Examining Cassava’s Potential to Enhance Food Security Under Climate Change

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Approximately 925 million people are undernourished and almost 90% of these people live in Sub-Saharan Africa (SSA), Asia and the Pacific. Sub-Saharan Africa, in particular, continues to have the highest proportion of chronically hungry individuals, where 1 in 3 (ca. 240 million) are undernourished in terms of both food quantity and nutrition. The threat of substantial changes in climate raises concerns about future capacity to sustain even current levels of food availability because climate change will impact food security most severely in regions where undernourishment is already problematic. Estimates of future climate change impacts on crops vary widely, particularly in Africa, due in part to a lack of agricultural and meteorological data. To more accurately predict future climate change impacts on food security we must first precisely assess the impact of climate change drivers on crops of food insecure regions. Recent advances in biofortification, a substantial yield gap, and an inherent potential to respond positively to globally increasing CO2 levels are synergistic and encouraging for cassava in an otherwise bleak global view of the future of food security in the developing world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abhary M, Siritunga D, Stevens G, Taylor NJ, Fauquet CM (2011) Transgenic biofortification of the starchy staple cassava (Manihot esculenta) generates a novel dink for protein. Plos One 6

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiol 154:526–530

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth EA, Davey PA, Bernacchi CJ, Dermody OC, Heaton EA, Moore DJ, Morgan PB, Naidu SL, Ra HSY, Zhu XG, Curtis PS, Long SP (2002) A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob Chang Biol 8:695–709

    Article  Google Scholar 

  • Ainsworth EA, Rogers A, Nelson R, Long SP (2004) Testing the “source-sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric For Meteorol 122:85–94

    Article  Google Scholar 

  • Ainsworth EA, Leakey ADB, Ort DR, Long SP (2008) FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply. New Phytol 179:5–9

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth EA, Yendrek CR, Stitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary production and implications for climate change. Ann Rev Plant Biol 63:In press

  • Alves AC (2002) Cassava botany and physiology, production and utilization. In: Hillocks RJ, Thresh JM, Bellotti AC (eds) Cassava: Biology. CABI Publishing, New York, p 332

    Google Scholar 

  • Arp WJ (1991) Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ 14:869–875

    Article  CAS  Google Scholar 

  • Azconbieto J (1983) Inhibition of photosynthesis by carbohydrates in leaves. Plant Physiol 73:681–686

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24:253–259

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Pimentel C, Long SP (2003) In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ 26:1419–1430

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Morgan PB, Ort DR, Long SP (2005) The growth of soybean under free air CO2 enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity. Planta 220:434–446

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi CJ, Kimball BA, Quarles DR, Long SP, Ort DR (2007) Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol 143:134–144

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi CJ, Rosenthal DM, Pimentel C, Long SP, Farquhar GD (2010) Modeling the temperature dependence of photosynthesis. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico: Understanding complexity from molecules to ecosystems. Springer, Dordrecht, pp 231–246

    Google Scholar 

  • Bernacchi CJ, Leakey ADB, Kimball BA, Ort DR (2011) Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion. Environ Pollut 159:1464–1472

    Article  PubMed  CAS  Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol Plant Mol Biol 31:491–543

    Google Scholar 

  • Betzelberger AM, Gillespie KM, McGrath JM, Koester RP, Nelson RL, Ainsworth EA (2010) Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 soybean cultivars. Plant Cell Environ 33:1569–1581

    PubMed  Google Scholar 

  • Cen YP, Sage RF (2005) The regulation of rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiol 139:979–990

    Article  PubMed  CAS  Google Scholar 

  • Clifford SC, Stronach IM, Black CR, Singleton-Jones PR, Azam-Ali SN, Crout NMJ (2000) Effects of elevated CO2, drought and temperature on the water relations and gas exchange of groundnut (Arachis hypogaea) stands grown in controlled environment glasshouses. Physiol Plant 110:78–88

    Article  CAS  Google Scholar 

  • Cock JH (1982) Cassava - a basic energy source in the tropics. Science 218:755–762

    Article  PubMed  CAS  Google Scholar 

  • Connor DJ, Cock JH, Parra GE (1981) Response of cassava to water shortage 1: growth and yield. Field Crops Res 4:181–200

    Article  Google Scholar 

  • Cowan IR, Farquhar GD (1977) Stomatal function in relation to leaf metabolism and environment. In: Jennings DH (ed) Integration of activity in higher plants. Cambridge University Press, Cambridge, pp 471–505

    Google Scholar 

  • Craigon J, Fangmeier A, Jones M, Donnelly A, Bindi M, De Temmerman L, Persson K, Ojanperä K (2002) Growth and marketable-yield responses of potato to increased CO2 and ozone. Eur J Agron 17:273–289

    Article  CAS  Google Scholar 

  • De Temmerman L, Vandermeiren K, Van Oijen M (2007) Response to the environment: carbon dioxide. In: Dick V, John B, Christiane G, Francine G, Donald KLM, Mark AT, Ross HA (eds) Potato biology and biotechnology, chapter 19. Amsterdam, Elsevier Science B.V., pp 395-413

  • Dermody O, Long SP, DeLucia EH (2006) How does elevated CO2 or ozone affect the leaf-area index of soybean when applied independently? New Phytol 169:145–155

    Article  PubMed  CAS  Google Scholar 

  • Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Ann Rev Plant Physiol Plant Mol Biol 48:609–639

    Article  CAS  Google Scholar 

  • Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana JF, Schmidhuber J, Tubiello FN (2007) Food, fibre and forest products. In Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds), Climate Change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pages 273–313

  • El-Sharkawy MA (2004) Cassava biology and physiology. Plant Mol Biol 56:481–501

    Article  PubMed  CAS  Google Scholar 

  • Emberson LD, Ashmore MR, Murray F, Kuylenstierna JCI, Percy KE, Izuta T, Zheng Y, Shimizu H, Sheu BH, Liu CP, Agrawal M, Wahid A, Abdel-Latif NM, van Tienhoven M, de Bauer LI, Domingos M (2001) Impacts of air pollutants on vegetation in developing countries. Water Air Soil Pollut 130:107–118

    Article  CAS  Google Scholar 

  • F.A.O. (2005) A review of cassava in Africa. In Proceedings on the validation forum on the global cassava development strategy. International Fund for Agricultural Development and the Food and Agriculture Organization

  • F.A.O. (2010) The state of food insecurity in the world. United Nations Food and Agriculture Organization, Rome

  • F.A.O. (2011) FAOSTAT http://www.fao.org/

  • F.A.O. (2006) World agriculture towards 2030/2050. Food and Agriculture Organization, Rome

    Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Fernandez MD, Tezara W, Rengifo E, Herrera A (2002) Lack of downregulation of photosynthesis in a tropical root crop, cassava, grown under an elevated CO2 concentration. Funct Plant Biol 29:805–814

    Article  CAS  Google Scholar 

  • Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28:997–1011

    Article  CAS  Google Scholar 

  • Ford MA, Thorne GN (1967) Effects of CO2 concentration on growth of sugar beet, barley, kale and maize. Ann Bot 31:629–644

    Google Scholar 

  • Gleadow RM, Evans JR, McCaffery S, Cavagnaro TR (2009) Growth and nutritive value of cassava (Manihot esculenta Cranz.) are reduced when grown in elevated CO2. Plant Biology 11:76–82

    Article  PubMed  CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  PubMed  CAS  Google Scholar 

  • Graham IA, Martin T (2000) Control of photosynthesis, allocation and partitioning by sugar regulated gene expression. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis: Physiology and metabolism. Kluwer, Boston, pp 233–248

    Google Scholar 

  • Hay RKM (1995) Harvest index—a review of its use in plant-breeding and crop physiology. Ann Appl Biol 126:197–216

    Article  Google Scholar 

  • Howeler RH (2002) Cassava mineral nutrition and fertilization. In: Hilloks RJ, Thresh MJ, Bellotti AC (eds) Cassava biology, production and utilization. CABI Publishing, New York, pp 115–147

    Chapter  Google Scholar 

  • Ihemere U, Arias-Garzon D, Lawrence S, Sayre R (2006) Genetic modification of cassava for enhanced starch production. Plant Biotechnol J 4:453–465

    Article  PubMed  CAS  Google Scholar 

  • Imai K, Coleman DF (1983) Elevated atmospheric partial pressure of carbon dioxide and dry matter production of Konjak (Amorphophalus konjack, K Kock). Photosynth Res 4:331–336

    CAS  Google Scholar 

  • Imai K, Coleman DF, Yanagisawa T (1984) Elevated atmospheric partial pressure of carbon-dioxide and dry matter production of Cassava (Manihot esculenta Crantz). Jpn J Crop Sci 53:479–485

    Article  Google Scholar 

  • IPCC (2007) Summary for policy makers. In Solomon S, Quin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds), Climate Change 2007: The physical science basis. Contribution of Working Group 1 to the Fourth Assesment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY

  • Jansson C, Westerbergh A, Zhang JM, Hu XW, Sun CX (2009) Cassava, a potential biofuel crop in (the) People’s Republic of China. Appl Energy 86:S95–S99

    Article  Google Scholar 

  • Le Quere C et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Article  Google Scholar 

  • Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006) Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol 140:779–790

    Article  PubMed  CAS  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  PubMed  CAS  Google Scholar 

  • Lebot V (2009) Tropical root and tuber crops: Cassava, sweet potato, yams and aroids. CABI, Oxforshire

    Google Scholar 

  • Long SP (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations—has its importance been underestimated? Plant Cell Environ 14:729–739

    Article  CAS  Google Scholar 

  • Long SP, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13:241–248

    Article  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Ann Rev Plant Biol 55:591–628

    Article  CAS  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921

    Article  PubMed  CAS  Google Scholar 

  • McKee IF, Farage PK, Long SP (1995) The interactive effects of elevated CO2 and O3 concentration on photosynthesis in spring wheat. Photosynth Res 45:111–119

    Article  CAS  Google Scholar 

  • Miglietta F, Magliulo V, Bindi M, Cerio L, Vaccari FP, Loduca V, Peressotti A (1998) Free air CO2 enrichment of potato (Solanum tuberosum L.): development, growth and yield. Glob Chang Biol 4:163–172

    Article  Google Scholar 

  • Miglietta F, Bindi M, Vaccari FP, Schapendonk A, Wolf J, Butterfield RE (2000) Crop ecosystem responses to climatic change: root and tuberous crops. In: Reddy KR, Hodges HF (eds) Climate change and global crop productivity. CABI Publishing, New York, pp 189–212

    Chapter  Google Scholar 

  • Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643

    Article  CAS  Google Scholar 

  • Morgan PB, Bernacchi CJ, Ort DR, Long SP (2004) An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean. Plant Physiol 135:2348–2357

    Article  PubMed  CAS  Google Scholar 

  • Narayanan NN, Ihemere U, Ellery C, Sayre RT (2011) Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels. Plos One 6

  • Nassar NMA, Ortiz R (2007) Cassava improvement: challenges and impacts. J Agric Sci 145:163–171

    Article  Google Scholar 

  • Ogren WL (1984) Photorespiration—pathways, regulation and modification. Ann Rev Plant Physiol Plant Mol Biol 35:415–442

    Article  CAS  Google Scholar 

  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400

    Article  PubMed  CAS  Google Scholar 

  • Pleijel H, Danielsson H, Vandermeiren K, Blum C, Colls J, Ojanpera K (2002) Stomatal conductance and ozone exposure in relation to potato tuber yield—results from the European CHIP programme. Eur J Agron 17:303–317

    Article  CAS  Google Scholar 

  • Rosenthal DM, Locke AM, Khozai M, Raines CA, Long SP, Ort DR (2011) Over-expressing the C3 photosynthesis cycle enzyme Sedoheptulose-1-7 Bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE). BMC Plant Biol 11:123

    Article  PubMed  CAS  Google Scholar 

  • Royal Society of London (2009) Reaping the benefits: Science and the sustainable intensification of global agriculture. Royal Society Policy Document

  • Sage RF, Sharkey TD, Seemann JR (1989) Acclimation to elevated CO2 in 5 C3 species. Plant Physiol 89:590–596

    Article  PubMed  CAS  Google Scholar 

  • Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquet C, Fellman J, Fregene M, Gruissem W, Mallowa S, Manary M, Maziya-Dixon B, Mbanaso A, Schachtman DP, Siritunga D, Taylor N, H Vanderschuren N, Zhang P (2011) The BioCassava Plus Program: Biofortification of Cassava for Sub-Saharan Africa. In S. S. B. W. R. O. D. Merchant (ed), Annual Review of Plant Biology, Vol 62, pages 251–272

  • Thomas RB, Strain BR (1991) Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carboon-dioxide. Plant Physiol 96:627–634

    Article  PubMed  CAS  Google Scholar 

  • Thu Lan Thi N, Gheewala SH, Garivait S (2007) Full chain energy analysis of fuel ethanol from cassava in Thailand. Environ Sci Technol 41:4135–4142

    Article  Google Scholar 

  • Vaccari FP, Miglietta F, Magliulo V, Giuntoli A, Cerio L, Bindi M (2001) Free air CO2 enrichment of potato Solanum tuberosum L.: photosynthetic capacity of leaves. Ital J Agron 5:3–10

    Google Scholar 

  • Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618

    Article  Google Scholar 

  • van Tienhoven AM, Zunckel M, Emberson L, Koosailee A, Otter L (2006) Preliminary assessment of risk of ozone impacts to maize (Zea mays) in southern Africa. Environ Pollut 140:220–230

    Article  PubMed  Google Scholar 

  • Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38:3431–3442

    Article  CAS  Google Scholar 

  • von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO Publishing, Collingwood

    Google Scholar 

  • Wang L, Peterson RB, Brutnell TP (2011) Regulatory mechanisms underlying C4 photosynthesis. New Phytol 190:9–20

    Article  CAS  Google Scholar 

  • Wheeler RM, Mackowiak CL, Sager JC, Knott WM (1994) Growth of soybean and potato at high CO2 partial pressure. Life Sci Space Res 14:251–255

    CAS  Google Scholar 

  • World Bank (2008) Agriculture for development. World Bank, Washington DC

    Google Scholar 

  • Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Ann Rev Plant Biol 61:235–261

    Article  CAS  Google Scholar 

  • Zunckel M, Koosailee A, Yarwood G, Maure G, Venjonoka K, van Tienhoven AM, Otter L (2006) Modelled surface ozone over southern Africa during the Cross Border Air Pollution Impact Assessment Project. Environ Model Softw 21:911–924

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald R. Ort.

Additional information

Communicated by: Nigel Taylor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenthal, D.M., Ort, D.R. Examining Cassava’s Potential to Enhance Food Security Under Climate Change. Tropical Plant Biol. 5, 30–38 (2012). https://doi.org/10.1007/s12042-011-9086-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-011-9086-1

Keywords

Navigation