Skip to main content
Log in

Low-Ti melts from the southeastern Siberian Traps Large Igneous Province: Evidence for a water-rich mantle source?

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Siberian Traps Large Igneous Province (STLIP) is one of the most voluminous volcanic provinces on Earth. The dominant erupted rocks are low-Ti basalts, which make up 80% by volume of the classical Noril’sk lava sequence. In the west Siberian basin and Maymecha-Kotuy area, the low-Ti basalts make up about 99% and 50% by volume, respectively. Dolerite sills in the Angara-Taseevskaya Syncline at the southeastern STLIP exhibit trace element patterns and Sr isotope ratios typical of the low-Ti basalts of the Noril’sk sequence. The most Mg-rich (MgO 9.5–11 wt%) and hence least differentiated dolerites are characterized by trace element patterns with Ta-Nb depletion, low Ce/Pb and high Sr/Pr. These trace element features are similar to water-saturated, mantle wedge-derived island arc basalts. These imply an important role of subduction fluid-derived trace elements in the source of melting beneath the Angara-Taseevskaya Syncline and other regions of the STLIP. Less magnesium rocks (MgO 3.8–6.1 wt%) with less prominent Ta-Nb depletion, higher Ce/Pb and lower Sr/Pr could be produced via olivine-plagioclase fractionation of primary high-magnesium melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al’mukhamedov A I, Medvedev A Ya and Zolotukhin V V 2004 Chemical Evolution of the Permian-Triassic Basalts of the Siberian Platform in Space and Time; Petrology 12 297–311.

    Google Scholar 

  • Arndt N, Lehnert K and Vasil’ev Y 1995 Meimechites: highly magnesian lithosphere-contaminated alkaline magmas from deep subcontinental mantle; Lithos 34 41–59.

    Article  Google Scholar 

  • Barry T L, Ivanov A V, Rasskazov S V, Demonterova E I, Dunai T J, Davies G R and Harrison D 2007 Helium isotopes provide no evidence for deep mantle involvement in widespread Cenozoic volcanism across Central Asia; Lithos 95 415–424.

    Article  Google Scholar 

  • Basu A R, Poreda R J, Renne P R, Teichmann F, Vasiliev Yu R, Sobolev N V and Turrin B D 1995 High-3He plume origin and temporal-spatial evolution of the Siberian flood basalts; Science 269 822–825.

    Article  Google Scholar 

  • Basu A R, Hannigan R E and Jacobsen S B 1998 Melting of the Siberian mantle plume; Geophys. Res. Lett. 25 2209–2212.

    Article  Google Scholar 

  • Bercovici D and Karato S-I 2003 Whole-mantle convection and the transition-zone water filter; Nature 425 39–44.

    Article  Google Scholar 

  • Bézos A, Lorand J-P, Humler E and Gros M 2005 Platinum-group element systematics in mid-oceanic ridge basaltic glasses from the Pacific, Atlantic, and Indian oceans; Geochim. Cosmochim. Acta. 69 2613–2627.

    Article  Google Scholar 

  • Bina C and Helffrich G 1994 Phase transition Clapyron slopes and transition zone seismic discontinuity topography; J. Geophys. Res. 99 15,853–15,860.

    Article  Google Scholar 

  • Bina C R, Stein S, Marton F C and Van Ark E M 2001 Implications for slab mineralogy for subduction dynamics; Phys. Earth Planet. Int. 127 51–66.

    Article  Google Scholar 

  • Blundy J D and Wood B J 1991 Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melt, and hydrothermal solutions; Geochim. Cosmochim. Acta. 55 193–209.

    Article  Google Scholar 

  • Burov E and Guillou-Frottier L 2005 The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere; Geophys. J. Int. 161 469–490.

    Article  Google Scholar 

  • Campbell I H, Czamanske G K, Fedorenko V A, Hill R I, Stepanov V and Kunilov V E 1992 Synchronism of the Siberian traps and the Permian-Triassic boundary; Science 258 1760–1763.

    Article  Google Scholar 

  • Cox K G 1978 Flood basalts, subduction and the break-up of Gondvanaland; Nature 274 47–49.

    Article  Google Scholar 

  • Czamanske G K, Gurevich A B, Fedorenko V and Simonov O 1998 Demise of the Siberian plume: paleogeographic and paleotectonic reconstruction from the prevolcanic and volcanic records, North-Central Siberia; Int. Geol. Rev. 40 95–115.

    Google Scholar 

  • Demonterova E I and Maslovskaya M N 2003 Chromatographic extraction of Sr from samples with high Rb/Sr ratios for mass-spectrometric analysis; In: Applied Geochemistry. Issue 4. Analytical studies; (eds) Burenkov E K and Kremenetskii A A (Moscow: Institute of Mineralogy, Geochemistry and Crystallochemistry of Rare Elements) 15–19 (in Russian).

    Google Scholar 

  • Demonterova E I and Ivanov A V 2003 Chromatographic extraction of Sr, Nd, Sm, Th, U and Pb from one aliquot for the following mass-spectrometric analysis; In: Proceedings of II Russian conference on isotopic geochronology (eds) Kozakov I K and Kotov A B (Sankt-Petersburg: Center of Informational Culture) 145–148 (in Russian).

    Google Scholar 

  • DePaolo D J and Wasserburg G J 1979 Neodymium isotopes in flood basalts from the Siberian Platform and inferences about their mantle sources; Proceedings Natl. Acad. Sci. US 76 3056–3060.

    Article  Google Scholar 

  • Dobretsov N L 2003 Mantle plumes and their role in the formation of anorogenic granitoids; Geologiya i geofizika 44 1243–1261.

    Google Scholar 

  • Dobretsov N L 2005 Large igneous provinces of Asia (250 Ma): Siberian and Emeishan traps (plateau basalts) and associated granitoids; Geologiya i geofizika 46 870–890.

    Google Scholar 

  • Domyshev V G 1974 Pyroclastic strata, traps volcanism and tectonics at the southeast of Tunguska syncline (Novosibirsk: Nauka) (in Russian).

    Google Scholar 

  • Dorendorf F, Wiechert U and Wörner G 2000 Hydrated sub-arc mantle: a source for the Klyuchevskoy volcano, Kamchatka/Russia; Earth Planet. Sci. Lett. 175 69–86.

    Article  Google Scholar 

  • Dun T and Sen C 1994 Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: A combined analytical and experimental study; Geochim. Cosmochim. Acta. 58 717–733.

    Article  Google Scholar 

  • Dulski P 2001 Reference materials for geochemical studies: New analytical data by ICP-MS and critical discussion of reference values; Geostandards Newsletter: The Journal of Geostandards and Geoanalysis 25 73–81.

    Article  Google Scholar 

  • Elkins-Tanton L T 2005 Continental magmatism caused by lithospheric delamination; In: Plates, Plumes and Paradigms (eds) Foulger G R et al (Princeton: Geological Society of America Special Paper) 388 449–462.

    Chapter  Google Scholar 

  • Escrig S, Capmas F, Dupré B and Allègre C J 2004 Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts; Nature 431 59–63.

    Article  Google Scholar 

  • Erwin D 2003 Impact at the Permo-Triassic boundary: a critical evaluation; Astrobiology 3 67–74.

    Article  Google Scholar 

  • Erwin D H, Bowring S A and Yugan J 2002 End-Permian mass extinctions: A review; In: Catastrophic Events and Mass Extinctions: Impacts and Beyond (eds) Koeberl C and MacLeod K G (Boulder: Geological Society of America Special Paper) 356 363–383.

    Chapter  Google Scholar 

  • Fedorenko V I, Lightfoot P C, Naldrett A J, Czamanske G K, Hawkesworth C J, Wooden J L and Ebel D S 1996 Petrogenesis of the flood-basalt sequence at Noril’sk, North Central Siberia; Int. Geol. Rev. 38 99–135.

    Article  Google Scholar 

  • Fedorenko V I and Czamanske G K 1997 Results of new filed and geochemical studies of the volcanic and intrusive rocks of the Maymecha-Kotuy area, Siberian flood-basalt province, Russia; Int. Geol. Rev. 39 479–531.

    Google Scholar 

  • Fedorenko V, Czamanske G, Zen’ko T, Budanh J and Siems D 2000 Field and geochemical studies of the melilite-bearing Arydzhangsky suite, and an overall perspective on the Siberian alkaline-ultramafic flood-volcanic rocks; Int. Geol. Rev. 42 769–804.

    Google Scholar 

  • Feoktistov G D 1961 Petrography of traps from water-drain area of the middle current of the Angara river (Irkutsk; Transactions of East-Siberian Geological Institute, issue 7) (in Russian).

    Google Scholar 

  • Feoktistov G D 1978 Petrology and conditions for formation of trap sills (Novosibirsk: Nauka) (in Russian).

    Google Scholar 

  • Feoktistov G D 2003 Distribution of trace elements in traps of Southern Siberian Platform; Geochimiya 41 130–135 (in Russian).

    Google Scholar 

  • Hart S R and Dun T 1993 Experimental cpx/melt partitioning of 24 trace elements; Contrib. Mineral. Petrol. 113 1–8.

    Article  Google Scholar 

  • Hirschmann M M, Aubaud C and Withers A C 2005 Storage capacity of H2O in nominally anhydrous minerals in the upper mantle; Earth Planet. Sci. Lett. 236 167–181.

    Article  Google Scholar 

  • Huang X G, Xu Y S and Karato S I 2005 Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite; Nature 434 746–749.

    Article  Google Scholar 

  • Ivanov A V 2007 Evaluation of different models for the origin of the Siberian Traps; In: The origin of melting anomalies: Plates, plumes and planetary processes (eds) Foulger G R and Jurdy D M (Princeton: Geological Society of America Special Paper) doi: 10.1130/2007.2430(31).

    Google Scholar 

  • Ivanov A V, He H, Yang L, Nikolaeva I V and Palesskii S V submitted 40Ar/39Ar dating of intrusive magmatism in the Angara-Taseevskaya syncline and its implication for duration of the Siberian Traps magmatic event; J. Asian Earth Sci.

  • Ivanov A V and Balyshev S V 2005 Mass flux across the lower-upper mantle boundary: vigorous, absent, or limited?; In: Plates, plumes and paradigms (eds) Foulger G R et al (Princeton: Geological Society of America Special Paper) 388 327–346.

    Chapter  Google Scholar 

  • Ivanov A V, Rasskazov S V, Feoktistov G D, He H and Boven A 2005 40Ar/39Ar dating of Usol’skii sill in the southeastern Siberian Traps Large Igneous Province: evidence for long-lived magmatism; Terra Nova 17 203–208.

    Article  Google Scholar 

  • Ivanov A V, Rasskazov S V, Chebykin E P, Markova M E and Saranina E V 2000 Y/Ho ratios in the Late Cenozoic basalts from the eastern Tuva, Russia: An ICP-MS study with enhanced data quality; Geostand. Newsl. J. Geostand. Geoanal. 24 197–204.

    Article  Google Scholar 

  • Irving A J 1978 A review of experimental studies of crystal/liquid trace element partitioning; Geochim. Cosmochim. Acta. 42 743–770.

    Article  Google Scholar 

  • Jones A P, Price G D, Price N J, DeCarli P S and Clegg R 2002 Impact induced melting and the development of large igneous provinces; Earth Planet. Sci. Lett. 202 551–561.

    Article  Google Scholar 

  • Kamo S L, Czamanske G K, Amelin Yu, Fedorenko V and Trofimov V 2000 U-Pb zircon and baddeleyite and U-Th-Pb perovskite ages for Siberian flood volcanism, Maimecha-Kotuy area, Siberia; J. Conf. Abs. (Goldshmit) 5(2) 569.

    Google Scholar 

  • Kamo S L, Czamanske G K, Amelin Yu, Fedorenko V A, Davis D W and Trofimov V R 2003 Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma; Earth Planet. Sci. Lett. 214 75–91.

    Article  Google Scholar 

  • Katayama I, Nakashima S and Yurimoto H 2006 Water content in natural eclogite and implication for water transport into the deep upper mantle; Lithos 86 245–259.

    Article  Google Scholar 

  • Keays R R 2005 Why the high PGE contents of komatiites, picrites and allied rocks require mantle plumes; In: The Great Plume Debate: The origin and impact of LIPs and hot spots (Fort William, Scotland: AGU Chapman Conference) 33–34.

    Google Scholar 

  • Kieffer B, Arndt N, Lapierre H, Bastien F, Bosch D, Pecher A, Yirgu G, Ayalew D, Weis D, Jerram D A, Keller F, Meugniot C 2004 Flood and shield basalts from Ethiopia: Magmas from African superswell; J. Petrol. 45 793–834.

    Article  Google Scholar 

  • King S D and Anderson D L 1998 Edge-driven convection; Earth Planet. Sci. Lett. 160 289–296.

    Article  Google Scholar 

  • Klemme S, Prowatke S, Hametner K and Günther D 2005 Partitioning of trace elements between rutile and silicate melts: Implications for subduction zones; Geochim. Cosmochim. Acta. 69 2361–2371.

    Article  Google Scholar 

  • Koeberl C, Gilmour L, Reimold W U, Claeys P and Ivanov B 2002 End-Permian catastrophe by bolide impact: Evidence of a gigantic release of sulfur from the mantle: Comment; Geology 30 855–856.

    Article  Google Scholar 

  • Le Bas M J and Streckeisen A L 1991 The IUGS systematics of igneous rocks; J. Geol. Soc. London 148 825–833.

    Article  Google Scholar 

  • Letnikov F A, Feoktistov G D, Ostafiichuk I M, Kiselev A I, Kharin G S, Grudinin M I, Molyavko V G and Tolstoi M I 1980 Fluid regime of formation of mantle rocks (Novosibirsk: Nauka) (in Russian).

    Google Scholar 

  • Lightfoot P C, Hawkesworth C J, Hergt J, Naldrett A J, Gorbachev N S, Fedorenko V A and Doherty W 1993 Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nf-, and Pb-isotope evidence from picritic and tholeitic lavas of the Noril’sk District, Siberian Trap, Russia; Contrib. Mineral. Petrol. 114 171–188.

    Article  Google Scholar 

  • Lightfoot P C and Keays R R 2005 Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap, Noril’sk region: implication for the origin of the Ni-Cu-PGE sulfide ores; Economic Geology 100 439–462.

    Article  Google Scholar 

  • Lin S C and van Keken P E 2005 Multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes; Nature 436 250–252.

    Article  Google Scholar 

  • Litasov K and Ohtani E 2003 Stability of various hydrous phases in CMAS pyrolite-H2O system up to 25 GPa; Phys. Chem. Minerals 30 147–156.

    Article  Google Scholar 

  • Litasov K D, Ohtani E, Sano A, Suzuki A and Funakoshi K 2005 Wet subduction versus cold subduction; Geophys. Res. Lett. 32 1–5.

    Article  Google Scholar 

  • Lustrino M 2005 How the delamination and detachment of the lower crust can influence basaltic magmatism; Earth-Sci. Rev. 72 21–38.

    Article  Google Scholar 

  • Malitch N S (Editor-in-Chief) 1999 Geological map of Siberian platform and adjoining areas Scale 1:1500000 (St-Petersburg: VSEGEI).

    Google Scholar 

  • Masaitis V L 1983 Permian and Triassic volcanism of Siberia; Zapiski Vserossiiskogo Mineralogicheskogo Obshestva 4 412–425 (in Russian).

    Google Scholar 

  • Matsukage K N, Jing Z C and Karato S 2005 Density of hydrous silicate melt at the conditions of Earth’s deep upper mantle; Nature 438 488–491.

    Article  Google Scholar 

  • Macdonald G A and Katsura T 1964 Chemical composition of Hawaiian lavas; J. Petrol. 5 82–133.

    Google Scholar 

  • McDonough W F and Sun S-S 1995 The composition of the Earth; Chem. Geol. 120 223–253.

    Article  Google Scholar 

  • Medvedev A Ya, Al’mukhamedov A I and Kirda N P 2003 Geochemistry of Permo-Triassic volcanic rocks of West Siberia; Geologiya i Geofizika 44 86–100.

    Google Scholar 

  • Melekestsev I V, Volynets O N, Ermakov V A, Kirsanova T P and Masurenkov Yu P 1991 The Shiveluch volcano; Active volcanoes of Kamchatka, v. 1 (Moscow: Nauka) 84–103 (in Russian).

    Google Scholar 

  • Middlemost E A K 1989 Iron oxidation ratios, norms and the classification of volcanic rocks; Chem. Geol. 77 19–26.

    Article  Google Scholar 

  • Molzahn M, Reisberg L and Wörner G 1996 Os, Sr, Nd, Pb, O isotope and trace element data from Ferrar flood basalts, Antarctica: evidence for enriched subcontinental lithospheric source; Earth Planet. Sci. Lett. 144 529–546.

    Article  Google Scholar 

  • Nikishin A M, Ziegler P A, Abbott D, Brunet M-F and Cloetingh S 2002 Permo-Triassic intraplate magmatism and rifting in Eurasia: implications for mantle plumes and mantle dynamics; Tectonophys. 351 3–39.

    Article  Google Scholar 

  • Ohtani E 2005 Water in the mantle; Elements 1(1) 25–30.

    Article  Google Scholar 

  • Orihasi Y, Maeda J, Niida K and Ishihara S 1997 Analysis of Nd isotope ratio for the GSJ reference sample Jndi-1. HUEPS Technical Report No 1 (Hokkaido Univ., Japan).

    Google Scholar 

  • Pearson D G, Irvine G J, Ionov D A, Boyd F R and Dreibus G E 2004 Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites; Chem. Geol. 208 29–59.

    Article  Google Scholar 

  • Perepelov A B, Bazanova L I, Florensky I V and Baluev E Yu 1986 Geochemical evolution of the Late Cenozoic magmatism of the southeastern flank of the Malko-Petropavlovsk zone of the cross-cut fault dislocations (Kamchatka); In: Geochemistry of magmatic rocks from different geodynamic settings (Novosibirsk: Nauka) 165–179 (in Russian).

    Google Scholar 

  • Pin C and Bassin C 1992 Evaluation of a strontium-specific extraction chromatographic method for isotopic analysis in geological materials; Anal. Chem. Acta 269 249–255.

    Article  Google Scholar 

  • Pin C, Briot D, Bassin C and Poitrasson F 1994 Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography; Anal. Chem. Acta 298 209–217.

    Article  Google Scholar 

  • Portnyagin M, Hoernle K, Plechov P, Mironov N and Khubunaya S 2007 Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc; Earth Planet. Sci. Lett. 255 53–69.

    Article  Google Scholar 

  • Puffer J H 2001 Contrasting high filed strength element content of continental flood basalts from plume versus reactivated-arc sources; Geology 29 675–678.

    Article  Google Scholar 

  • Pushkarev Yu D 1997 Two kinds of the crust-mantle interaction and a new approach to the deep-earth ore-formation problems; Doklady Earth Sciences 355 524–526.

    Google Scholar 

  • Reichow M K, Saunders A D, White R V, Pringle M S, Al’mukhamedov A I, Medvedev A I and Kirda N P 2002 40Ar/39Ar dates from the West Siberian Basin: Siberian flood basalt province doubled; Science 296 1846–1849.

    Article  Google Scholar 

  • Reichow M K, Saunders A D, White R V, Al’mukhamedov A I and Medvedev A Ya 2005 Geochemistry and petrogenesis of basalts from the West Siberian Basin: an extension of the Permo-Triassic Traps, Russia; Lithos 79 425–452.

    Article  Google Scholar 

  • Renne P R 1995 Excess Ar-40 in biotite and hornblende from the Norilsk-1 intrusion, Siberia — Implications for the age of the Siberian Traps; Earth Planet. Sci. Lett. 131 165–176

    Article  Google Scholar 

  • Renne P R and Basu A R 1991 Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary; Science 253 176–179.

    Article  Google Scholar 

  • Rudnick R L and Fountain D M 1995 Nature and composition of the continental crust: a lower crustal perspective; Rev. Geophys. 33 267–309.

    Article  Google Scholar 

  • Ryabchikov I D, Ntaflos Th, Büchl A and Solovova I P 2001 Subalkaline picrobasalts and plateau basalts from Putorana Plateau (Siberian CFB province). 1. Mineral compositions and geochemistry of major and trace elements; Geokhimiya 5 467–483.

    Google Scholar 

  • Ryabov V V, Shevko A Ya and Gora M P 2001 Magmatic formations in Noril’sk region. Volume 1. Trapp petrology (Novosibirsk: Nonparel Publishers) (in Russian).

    Google Scholar 

  • Sakamaki T, Suzuki A and Ohtani E 2006 Stability of hydrous melt at the base of the Earth’s upper mantle; Nature 439 192–194.

    Article  Google Scholar 

  • Saunders A D, England R W, Reichow M K and White R V 2005 A mantle plume origin for the Siberian traps: uplift and extension in the West Siberian Basin, Russia; Lithos 79 407–424.

    Article  Google Scholar 

  • Sharma M, Basu A R and Nesterenko G V 1991 Temporal Sr, Nd-, and Pb-isotopic variations in the Siberian flood basalts: Implications for the plume-source characteristics; Earth Planet. Sci. Lett. 113 365–381.

    Article  Google Scholar 

  • Shatsky V S, Sitnikova E S, Koz’menko O A, Palessky S V, Nikolaeva I V and Zayachkovsky A A 2006 Behavior of incompatible elements during ultrahigh-pressure metamorphism (by the example of rocks of the Kokchetav massif); Rus. Geol. Geophys. 47 482–496.

    Google Scholar 

  • Shaw D M 1970 Trace element fractionation during anatexis; Geochim. Cosmochim. Acta. 34 237–243.

    Article  Google Scholar 

  • Sheth H C, Torre-Alvarado I S and Verma S P 2002 What is the “calc-alkaline rock series?”; Int. Geol. Rev. 44 686–701.

    Article  Google Scholar 

  • Silver P G, Behn M D, Kelley K, Schmitz M and Savage B 2006 Understanding cratonic flood basalts; Earth Planet. Sci. Lett. 245 190–201.

    Article  Google Scholar 

  • Smyth J R, Frost D J, Nestola F, Holl C M and Bromiley G 2006 Olivine hydration in the deep upper mantle: Effect of temperature and silica activity; Geophys. Res. Lett. 33 L15301.

  • Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S-L, Danyushevsky L V, Elliot T, Frey F A, Garcia M O, Gurenko A A, Kamenetsky V S, Kerr A C, Krivolutskaya N A, Matvienkov V V, Nikogosian I K, Rocholl A, Sigurdsson I A, Sushchevskaya N M and Teklay M 2007 The amount of recycled crust in sources of mantle-derived melts; Science 316 412–417.

    Article  Google Scholar 

  • Spetsius Z V 2004 Petrology of highly aluminous xenoliths from kimberlites of Yakutia; Lithos 77 525–538.

    Article  Google Scholar 

  • Sun S-S and McDonough W F 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and process; In: Magmatism in the oceanic basins (eds) Sounders A D and Norry M J (Geol. Soc. Spec. Publ.) 42 313–345.

  • Tanton L T E and Hager B H 2000 Melt intrusion as a trigger for lithospheric foundering and the Eruption of Siberian flood basalts; Geophys. Res. Lett. 27 3937–3940.

    Article  Google Scholar 

  • Taylor S R and McLennan S M 1985 The continental crust: its composition and evolution. An examination of the geochemical record presented in sedimentary rocks (Oxford: Blackwell).

    Google Scholar 

  • Ulmer P 2001 Partial melting in the mantle wedge — the role of H2O in the genesis of mantle-derived ‘arc-related’ magmas; Phys. Earth. Planet. Interiors 127 215–232.

    Article  Google Scholar 

  • Vasil’ev Yu R, Zolotukhin V V, Feoktistov G D and Prusskaya S N 2000 Evaluation of the volumes and genesis of Permo-Triassic Trap magmatism of the Siberian Platform; Geologiya i Geofizika 41 1696–1705 (in Russian).

    Google Scholar 

  • Verma S P, Torres-Alvarado I S and Sotelo-Rodríguez Z T 2002 SINCLAS: standard igneous norm and volcanic rock classification system; Comput. Geosci. 28 711–715.

    Article  Google Scholar 

  • Vilenskii A M 1967 Petrology of intrusive traps of the northern Siberian platform (Moscow: Nauka) (in Russian).

    Google Scholar 

  • Volynets O N, Ponomareva V V and Babansky A D 1997 Magnesian basalts of Shiveluch andesite volcano, Kamchatka; Petrology 5 183–196.

    Google Scholar 

  • Walker R J, Morgan J W, Beary E S, Smoliar M I, Czamanske G K and Horan M F 1997 Application of 190Pt-186Os isotope system to geochemistry and cosmochemistry; Geochim. Cosmochim. Acta 61 4799–4807.

    Article  Google Scholar 

  • Wooden J L, Czamanske G K, Fedorenko V A, Arndt N T, Chauvel C, Bouse R M, King B-S W, Knight R J and Siems D F 1993 Isotopic and trace-element constraints on mantle and crustal contributions to characterization of Siberian continental flood basalts, Noril’sk area, Siberia; Geochim. Cosmochim. Acta 57 3677–3704.

    Article  Google Scholar 

  • Yasnygina T A, Rasskazov S V, Markova M E, Ivanov A V and Demonterova E I 2003 Determination of trace elements in volcanic rocks of basic and intermediate composition by ICP-MS method using microwave oven acid decomposition technique; In: Applied Geochemistry. Issue 4. Analytical studies; (eds) Burenkov E K and Kremenetskii A A (Moscow: Institute of Mineralogy, Geochemistry and Crystallochemistry of Rare Elements) 48–56 (in Russian).

    Google Scholar 

  • Yarmolyuk V V, Litvinovsky B A, Kovalenko V I, Jahn B M, Zanvilevich A N, Vorontsov A A, Zhuravlev D Z, Posokhov V F, Kuz’min D V and Sandimirova G P 2001 Formation stages and sources of the peralkaline granitoid magmatism of the Northern Mongolia-Transbaikalia rift belt during the Permian and Triassic; Petrology 9 302–328.

    Google Scholar 

  • Yasuda A and Fujii T 1998 Ascending subducted oceanic crust entrained within mantle plumes; Geophys. Res. Lett. 25 1561–1564.

    Article  Google Scholar 

  • Zolotukhin V V 1997 Basic pegmatoids and Norilsk-type PGE mineralization; Geologiya i Geofizika 38 1096–1105 (in Russian).

    Google Scholar 

  • Zolotukhin V V, Vilenskii A M and Dyuzhikov O A 1986 Basalts of Siberian platform (Novosibirsk: Nauka) (in Russian).

    Google Scholar 

  • Zonenshain L P, Kuzmin M I and Natapov L M 1990 Geology of the USSR: plate tectonic synthesis (Am. Geophys. Union Geodynamic Ser. 21).

  • Zorin Y A 1999 Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia; Tectonophys. 306 33–56.

    Article  Google Scholar 

  • Zorin Yu A, Belichenko V G, Turutanov E K, Kozhevnikov V M, Sklyarov E V, Tomurtogoo O, Khosbayar P, Arvisbaatar N and Biambaa C 1998 Terranes of East Mongolia and Central Trans-Baikal region and evolution of the Mongolia-Okhotsk fold belt; Geologiya i Geofizika 39 11–25.

    Google Scholar 

  • Zorin Y A and Vladimirov B M 1989 On the genesis of trap magmatism of the Siberian platform; Earth Planet. Sci. Lett. 93 109–112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei V. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, A.V., Demonterova, E.I., Rasskazov, S.V. et al. Low-Ti melts from the southeastern Siberian Traps Large Igneous Province: Evidence for a water-rich mantle source?. J Earth Syst Sci 117, 1–21 (2008). https://doi.org/10.1007/s12040-008-0008-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-008-0008-z

Keywords

Navigation