Skip to main content
Log in

Kinetics and mechanism of uncatalyzed and ruthenium(III)-catalyzed oxidation of formamidine derivative by hexacyanoferrate(III) in aqueous alkaline medium

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The catalytic effect of ruthenium(III) on the oxidation of N, N-dimethyl- N -(4H-1,2,4-triazol- 3-yl) formamidine (ATF) by hexacyanoferrate(III) (HCF) was studied spectrophotometrically in aqueous alkaline medium. Both uncatalyzed and catalyzed reactions showed first order kinetics with respect to [HCF], whereas the reaction orders with respect to [ATF] and [OH ] were apparently less than unity over the concentration range studied. A first order dependence with respect to [RuIII] was obtained. Increasing ionic strength increased the rate of uncatalyzed reaction and decreased the rate of the catalyzed one Plausible mechanistic schemes of oxidation reactions have been proposed. In both cases, the final oxidation products are identified as aminotriazole, dimethyl amine and carbon dioxide. The rate laws associated with the reaction mechanisms are derived. The reaction constants involved in the different steps of the mechanisms were calculated. The activation and thermodynamic parameters have been computed and discussed.

The catalytic effect of ruthenium(III) on the oxidation of N,N-dimethyl-N’-(4H-1,2,4-triazol-3-yl) formamidine by alkaline hexacyanoferrate(III) has been studied. The final oxidation products are identified as aminotriazole, dimethyl amine and carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Figure 3
Figure 4
Scheme 2
Figure 5
Figure 6
Scheme 3
Figure 7

Similar content being viewed by others

References

  1. Devra V and Yadav M B 2012 Russ. J. Chem. 5 67

    CAS  Google Scholar 

  2. Shukla R and Upadhyay S K 2008 Indian J. Chem. 47A 551

    CAS  Google Scholar 

  3. Jose T P, Nandibewoor S T and Tuwar S M 2006 J. Sulfur Chem. 27 25

    Article  CAS  Google Scholar 

  4. Kelson E P and Phengsy P P 2000 Int. J. Chem. Kinet. 32 760

    Article  CAS  Google Scholar 

  5. Leal J M, Garcia B and Domingo P L 1998 Coord. Chem. Rev. 173 79

    Article  CAS  Google Scholar 

  6. Farokhi S A and Nandibewoor S T 2003 Tetrahedron 59 7595

    Article  CAS  Google Scholar 

  7. (a) Beeman R W and Matsumura F 1973 Nature 242 273; (b) Aziz S A and Knowles C O Nature 242 417

  8. Leung V S K, Chan T Y K and Yeung V T F 1999 Clin. Toxicol. 37 513

    CAS  Google Scholar 

  9. Fawzy A and Shaaban M R 2014 Transition Met. Chem. 39 379

    Article  CAS  Google Scholar 

  10. Asghar B H and Fawzy A 2014 J. Saudi. Chem. Soc. doi: 10. 1016/j.jscs.2014.12.001

  11. Goel A and Sharma S 2010 Transition Met. Chem. 35 549

    Article  CAS  Google Scholar 

  12. Meyers A I and Hutchings R 1996 Heterocycles 42 475

    Article  CAS  Google Scholar 

  13. Matulenko M and Meyers A I 1996 J. Org. Chem. 61 573

    Article  CAS  Google Scholar 

  14. Padhye S and Kaufman G B 1985 Coord. Chem. Rev. 63 127

    Article  CAS  Google Scholar 

  15. Asiri A M and Khan S A 2010 Molecules 15 4784

    Article  CAS  Google Scholar 

  16. Groessl M, Reisner E, Hartinger C G, Eichinger E, Semenova O, Timerbaev A R, Jakupec M A, Arion V B and Keppler B K 2007 J. Med. Chem. 50 2185

    Article  CAS  Google Scholar 

  17. Jha A, Murthy Y L N, Durga G and Sundari T T 2010 E-J. Chem 7 1571

    Article  CAS  Google Scholar 

  18. Asiri A M, Baghlaf A O, Abdel-Rahman R M, Khan S A and Ishaq M 2013 Asian J. Chem. 25 7779

    Article  CAS  Google Scholar 

  19. Das A K 2001 Coord. Chem. Rev. 213 307

    Article  CAS  Google Scholar 

  20. Fawzy A 2015 Int. J. Chem. Kinet. 47 1

    Article  CAS  Google Scholar 

  21. Fawzy A 2014 Transition Met. Chem. 39 567

    Article  CAS  Google Scholar 

  22. Fawzy A 2015 Transition Met. Chem. 40 287

    Article  CAS  Google Scholar 

  23. Jeffery G H, Bassett J, Mendham J and Denney R C 1996 In Vogel’s text book of quantitative chemical analysis 5th edn (ELBS Longman: Essex) (a) p. 399 and (b) p. 384

  24. Puttaswamy R and Jagadeesh R V 2005 Appl. Catal. A 292 259

    Article  CAS  Google Scholar 

  25. Feigl F 1975 In Spot tests in organic analysis (New York: Elsevier) p. 195

  26. Leal J M, Domingo P L, Garcla B and Ibeas S 1993 J. Chem. Soc. Faraday Trans. 89 3571

    Article  CAS  Google Scholar 

  27. Frost A A and Person R G 1970 In Kinetics and mechanism (New Delhi: Wiley Eastern) p. 147

  28. Amis E S 1966 In Solvent effect on reaction rates and mechanism (Academic Press: New York) p. 28

  29. Michaelis L and Menten M L 1918 Biochem. Z. 49 333

    Google Scholar 

  30. Mech M D, Meti K S, Byadagi, Nandibewoor S T and Chimatadar S A 2014 Monatsh. Chem. 145 1561

    Article  Google Scholar 

  31. Chimatadar S A, Kini A K and Nandibewoor S T 2005 Inorg. React. Mech. 5 231

    CAS  Google Scholar 

  32. Weissberger A 1974 In Investigation of rates and mechanism of reactions in techniques of chemistry (New York: Interscience Publication) p. 421

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AHMED FAWZY.

Additional information

Supplementary Information (SI)

All additional information pertaining to the order with respect to substrate (figure S1), alkali (figure S2) and catalyst (figure S3) are given in the supporting information, available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 37.0 KB)

Appendix A. Derivation of the rate-law expression for the uncatalyzed oxidation reaction.

Appendix A. Derivation of the rate-law expression for the uncatalyzed oxidation reaction.

According to the suggested mechanistic scheme 2,

$$ \text{Rate} = \frac{-d[\text{HCF]}}{dt}\, = k_{1}[\text{C}_{1}] $$
(A1)
$$ \text{K} = \frac{[\text{ATF}^{-}]}{[\text{ATF}][\text{OH}^{-}]}\, , [\text{ATF}^{\mathrm{-}}]= K[\text{ATF}][\text{OH}^{\mathrm{-}}] $$
(A2)
$$\begin{array}{@{}rcl@{}} K_{1} &=& \frac{\text{[C}_{\text{1}} \text{] } }{[\text{ATF}^{-}][\text{HCF}]}\,, [\text{C}_{1}] = K_{1}[\text{ATF}^{\mathrm{-}}][HCF] \\ &=& KK_{1}[\text{ATF}][\text{HCF}][\text{OH}^{\mathrm{-}}] \end{array} $$
(A3)

Substituting Eq. (A3) into Eq. (A1) leads to,

$$ \text{Rate} = k_{1}KK_{1}[\text{ATF}][\text{HCF}][\text{OH}^{\mathrm{-}}] $$
(A4)

The total concentration of ATF is given by,

$$ [\text{ATF}]_{\mathrm{T}} = [\text{ATF}]_{\mathrm{F}} + [\text{ATF}^{\mathrm{-}}] + [\text{C}_{1}] $$
(A5)
$$ [\text{ATF}]_{\mathrm{F}}\,=\,\frac{[\text{ATF}]_{\mathrm{T}}} {1+K[\text{OH}^{-}]+ KK_{1} [\text{HCF}][\text{OH}^{-}]} $$
(A6)

In view of low [HCF], the third denominator term KK 1[HCF][OH] in the above equation can be neglected. Therefore, Eq. (A6) can be simplified to the following equation,

$$ [\text{ATF}]_{\mathrm{F}}\,=\,\frac{[\text{ATF}]_{\mathrm{T}}} {1+ K[\text{OH}^{-}]} $$
(A7)
$$ [\text{HCF}]_{\mathrm{T}} = [\text{HCF}]_{\mathrm{F}} + [\text{C}_{1}] $$
(A8)
$$ [\text{HCF}]_{\mathrm{F}}\,=\,\frac{[\text{HCF}]_{\mathrm{T}}} {1+ KK_{1} [\text{ATF}][\text{OH}^{-}]} $$
(A9)

Substituting Eqs. (A7) and (A9) into Eq. (A4) (and omitting ‘T’ and ‘F’ subscripts) leads to,

$$ \text{Rate} \,=\,\frac{k_{1} KK_{1} [\text{ATF}][\text{HCF}][\text{OH}^{-}]}{(1 + K[\text{OH}^{-}])(1+KK_{1} [\text{ATF}][\text{OH}^{-}])} $$
(A10)

Under pseudo-first order condition, the rate-law can be expressed by Eq. (A11),

$$ \text{Rate} = \frac{-d[\text{HCF}]}{dt}\,= k_{\mathrm{U}}[\text{HCF}] $$
(A11)

Comparing Eqs. (A10) and (A11), the following relationship is obtained.

$$ k_{\mathrm{U}}{}={}\frac{k_{1} KK_{1} [\text{ATF}][\text{OH}^{-}]}{1 {}+{} K{}[{}\text{O{}H}^{-}{}]{}+{}K{}K_{{}1}{} [{}\text{ATF}]{}[{}\text{O{}H}^{-}{}]{}+{}K^{2}{}K_{{}1}{} [{}\text{ATF}][\text{OH}^{-}]^{2}} $$
(A12)

The term K 2 K 1[ATF][OH ] 2 in the denominator of Eq. (A12) is negligibly small compared to unity in view of the low concentration of ATF used. Therefore, this term can be deleted and with rearrangement, the following equations are obtained.

$$ \frac{1}{k_{\mathrm{U}}} \,=\,\left( {\frac{\text{1}}{k_{\text{1}} KK_{\text{1}} [\text{OH}^{-}]}+\frac{\text{1}}{k_{\text{1}} K_{\text{1}}} } \right)\frac{1}{[\text{ATF}]}+\frac{\text{1}}{k_{1}} $$
(A13)
$$ \frac{1}{k_{\mathrm{U}}} \,=\,\left( {\frac{\text{1}}{k_{\text{1}} KK_{\text{1}} [\text{ATF}]}} \right)\frac{1}{[\text{OH}^{-}]}+\frac{1}{k_{\text{1}} K_{\text{1}} [\text{ATF}]}+\frac{\text{1}}{k_{1}} $$
(A14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

FAWZY, A. Kinetics and mechanism of uncatalyzed and ruthenium(III)-catalyzed oxidation of formamidine derivative by hexacyanoferrate(III) in aqueous alkaline medium. J Chem Sci 128, 733–743 (2016). https://doi.org/10.1007/s12039-016-1067-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1067-3

Keywords

Navigation