Skip to main content
Log in

Structural diversity in serine derived homochiral metal organic frameworks

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Two new Zn(II) and Cd(II) based homochiral metal–organic frameworks (MOFs) [SerCdOAc and Zn(Ser)2] have been synthesized using pyridyl functionalized amino acid, viz., serine, as an organic linker. The SerCdOAc structure is three dimensional, while that of the Zn(Ser)2 is two dimensional. The polar voids of the corresponding MOFs are filled with solvent molecules (water in the case of SerCdOAc and methanol in the case of Zn(Ser)2). In both cases, metal centres, i.e., Zn(II) and Cd(II), are hexacoordinated. However, with a change in the solvent for synthesis, ligand coordination mode and incorporation of additional coordinated anion resulted in a great change in the final MOF architecture. Herein, for the first time, we could achieve structural variety and synthesize MOFs composed of only metal ion and pyridyl functionalized amino acid linker.

Two new Zn(II) and Cd(II) based homochiral metal–organic frameworks (MOFs) [SerCdOAc and Zn(Ser)2] have been synthesized using pyridyl functionalized amino acid viz. Serine as an organic linker. The SerCdOAc structure is three dimensional, while Zn(Ser)2 have two dimensional architecture. The polar voids of the corresponding MOFs are filled with solvent molecules [water in case of SerCdOAc and methanol in case of Zn(Ser)2]. In both cases, metal centers [Zn(II) and Cd(II)] are hexacoordinated. However, change in the solvent for synthesis, ligand coordination mode and incorporation of additional coordinated anion resulted in a great change in the final MOF architecture. Herein, for the first time, we could achieve structural variety as well as able to synthesize MOFs composed of only metal ion and pyridyl functionalized amino acid linker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. (a) Nakano T and Okamoto Y 2001 Chem. Rev. 101 4013; (b) Watson J D and Crick F H C 1953 Nature 171 737; (c) Voet D, Voet J G and Pratt C W 1999 In Fundamentals of Biochemistry (New York: Wiley); (d) Schulz G E and Schirmer R H 1979 In Principles of Protein Structure (New York: Springer-Verlag); (e) Saenger W 1984 In Principles of Nucleic Acid Structure (New York: Springer-Verlag); (f) Moorthy J N, Mandal S and Venugopalan P 2012 Cryst. Growth Des. 12 2942; (g) Moorthy J N, Mandal S, Mukhopadhyay A and Samanta S 2013 J. Am. Chem. Soc. 135 6872

  2. (a) Mo K, Yang Y and Cui Y 2014 J. Am. Chem. Soc. 136 1746; (b) Cho S –H, Ma B, Nguyen S T, Hupp J T and Schmitt T E A 2006 Chem. Commun. 2563; (c) Ma L Q, Abney C and Lin W B 2009 Chem. Soc. Rev. 38 1248; (d) Wang C, Zheng M and Lin W 2011 J. Phys. Chem. Lett. 2 1701

  3. (a) Dybtsev D N, Nuzhdin A L, Chun H, Bryliakov K P, Talsi E P, Fedin V P and Kim K 2006 Angew. Chem. 118 930; (b) Xiang S -C, Zhang Z, Zhao C -G, Hong K, Zhao X, Ding D -R, Xie M -H, Wu C -D, Das M C, Gill R, Thomas K M and Chen B 2010 Nat. Commun. 2 204; (c) Padmanaban M, Müller P, Lieder C, Gedrich K, Grünker R, Bon V, Senkovska I, Baumgärtner S, Opelt S, Paasch S, Brunner E, Glorius F, Klemm E and Kaskel S 2011 Chem. Commun. 47 12089; (d) Wang W, Dong X, Nan J, Jin W, Hu Z, Chen Y and Jiang J 2012 Chem. Commun. 48 7022

  4. (a) Pana’kova D, Werdich A A and MacRae C A 2010 Nature 466 874; (b) Burykin A and Warshel A 2003 Biophys J. Dec. 85 3696

  5. (a) Furukawa H, Gándara F, Zhang Y, Jiang J, Queen W L, Hudson M R and Yaghi O M 2014 J. Am. Chem. Soc. 136 4369; (b) Zhao X, Xiao B, Fletcher J A, Thomas K M, Bradshaw D and Rosseinsky M J 2004 Science 306 1012; (c) Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S and Margiolaki I 2005 Science 309 2040; (d) Chandler B D, Enright G D, Udachin K A, Pawsey S, Ripmeester J A, Cramb D T and Shimizu G K H 2008 Nat. Mater. 7 229; (e) Chae H K, Siberio-Perez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O’Keeffe M and Yaghi O M 2004 Nature 427 523; (f) Lin Z, Lü J, Hong M and Cao R 2014 Chem. Soc. Rev. 43 5867

  6. (a) Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S T and Hupp J T 2009 Chem. Soc. Rev. 38 1450; (b) Seo J S, Whang D, Lee H, Jun S I, Oh J, Jeon Y J and Kim K 2000 Nature 404 982; (c) Zou R -Q, Sakurai H and Xu Q 2006 Angew. Chem. Int. Ed. 45 2542

  7. (a) Kurmoo M 2009 Chem. Soc. Rev. 38 1353; (b) Tamaki H, Zhong Z J, Matsumoto N, Kida S, Koikawa M, Achiwa N, Hashimoto Y and Okawa H 1992 J. Am. Chem. Soc. 114 6974; (c) Ohba M and Okawa H 2000 Coord. Chem. Rev. 198 313; (d) Shiga T, Okawa H, Kitagawa S and Ohba M 2006 J. Am. Chem. Soc. 128 16426; (e) Zeng M –H, Wang B, Wang X –Y, Zhang W –X, Chen X –M and Gao S 2006 Inorg. Chem. 45 7069

  8. (a) Kundu T, Sahoo S C and Banerjee R 2012 Chem. Commun. 48 4998; (b) T Panda, Kundu T and Banerjee R 2012 Chem. Commun. 48 5464; (c) Mallick A, Kundu T and Banerjee R 2012 Chem. Commun. 48 8829; (d) Bureekaew S, Horike S, Higuchi M, Mizuno M, Kawamura T, Tanaka D, Yanai N and Kitagawa S 2009 Nat. Mater. 8 831; (e) Hurd J A, Vaidhyanathan R, Thangadurai V, Ratcliffe C I, Moudra- kovski I M and Shimizu G K H 2009 Nat. Chem. 1 705; (f) Wiers B M, Foo M -L, Balsara N P and Long J R 2011 J. Am. Chem. Soc. 133 14522; (g) Taylor J M, Mah R K, Moudrakovski I L, Ratcliffe C I, Vaidhyanathan R and Shimizu G K H 2010 J. Am. Chem. Soc. 132 14055; (h) Okawa H, Shigematsu A, Sadakiyo M, Miyagawa T, Yoneda K, Ohba M and Kitagawa H 2009 J. Am. Chem. Soc. 131 13516; (i) Panda T, Kundu T and R Banerjee 2013 Chem. Commun. 49 6197; (j) Shigematsu A,Yamada T and Kitagawa H 2011 J. Am. Chem. Soc. 133 2034

  9. (a) Vaidhyanathan R, Bradshaw D, Rebilly J-N, Barrio J P, Gould J A, Berry N G and Rosseinsky M J 2006 Angew. Chem. Int. Ed. 45 6495; (b) Bradshaw D, Claridge J B, Cussen E J, Prior T J and Rosseinsky M J 2005 Acc. Chem. Res. 38 273; (c) Rebilly J, Gardner P W, Darling G R, Bacsa J and Rosseinsky M J 2008 Inorg. Chem. 47 9390

  10. (a) Ong T T, Kavuru P, Nguyen T, Cantwell R, Wojtas Łand Zaworotko M J 2011 J. Am. Chem. Soc. 133 9224; (b) Sasmal P K, Patra A K, Nethaji M and Chakravarty A R 2007 Inorg. Chem. 46 11113; (c) Tovar A T, Ramrez L R, Campero A, Romerosa A, Esparza R M and Hoz M J R 2004 J. Inorg. Biochem. 98 1045; (d) Zhang J -J, Sheng T -L, Hu S -M, Xia S -Q, Leibeling G, Meyer F, Fu Z -Y, Chen L, Fu R -B and Wu X -T 2004 Chem. Eur. J. 10 3963; (e) Kumar D K, Das A and P Dastidar 2007 Cryst. Eng. Comm. 9 548

  11. (a) Sahoo S C, Kundu T and Banerjee R 2011 J. Am. Chem. Soc. 133 17950; (b) Kundu T, Sahoo S C and Banerjee R 2012 Cryst. Growth and Des. 12 4633; (c) Kundu T, Sahoo S C and Banerjee R 2013 Cryst. Eng. Comm. 15 9634; (d) Kundu T, Sahoo S C and Banerjee R 2013 Chem. Commun. 49 5262

  12. (a) Bruker (2005). APEX2. Version 5.053. Bruker AXS Inc., Madison,Wisconsin, USA; (b) Bruker 2004 SAINT-Plus(Version 7.03). Bruker AXS Inc., Madison, Wisconsin, USA; (c) Sheldrick, G M 2002 SADABS(Version 2.03) and TWINABS(Version 1.02). University of Göttingen, Germany; (d) Sheldrick, G M 1997 SHELXS ‘97and SHELXL ‘97. University of Göttingen, Germany; (e) Spek A L 2005 PLATON: A Multipurpose Crystallographic Tool (The Netherlands: Utrecht University)

  13. Wang M, Xie M, Wu C and Wang Y 2009 Chem. Commun. 2396

  14. (a) Desiraju G R and Steiner T 1999 In The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford: Oxford University Press); (b) Kovacs A, Szabo A and Hargittai I 2002 Acc. Chem. Res. 35 887; (c) Bajpai A, Venugopalan P and Moorthy J N 2014 CrystEngComm DOI: 10.1039/C3CE42515K; (d) Vangala V R, Bhogala B R, Dey A, Desiraju G R, Broder C K, Smith P S, Mondal R, Howard J A K and Wilson C C 2003 J. Am. Chem. Soc. 125 14495; (e) Bajpai A, Venugopalan P, Natarajan P and Moorthy J N 2012 J. Org. Chem. 77 7858; (f) Murugavel R, Choudhury A, Walawalkar M G, Pothiraja R and Rao C N R 2008 Chem. Rev. 108 3549; (g) Murugavel R, Kumar P, Walawalkar M G and Mathialagan R 2007 Inorg. Chem. 46 6828

Download references

Acknowledgement

T K acknowledges CSIR, New Delhi, India, for a SRF. R.B. acknowledges CSIR’s XII Five Year Plan Project (CSC0122) for funding. Financial assistance from the BRNS (2011/37C/44/BRNS) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to TANAY KUNDU or RAHUL BANERJEE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KUNDU, T., BANERJEE, R. Structural diversity in serine derived homochiral metal organic frameworks. J Chem Sci 126, 1399–1408 (2014). https://doi.org/10.1007/s12039-014-0714-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-014-0714-9

Keywords

Navigation