Skip to main content
Log in

Inositol Hexakisphosphate Kinase 2 Promotes Cell Death in Cells with Cytoplasmic TDP-43 Aggregation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

TAR DNA-binding protein 43 (TDP-43) has been identified as a major component of ubiquitin-positive inclusions in the brains and spinal cords of patients with frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) or amyotrophic lateral sclerosis (ALS). The phosphorylated C-terminal fragment of TDP-43 forms aggregates in the neuronal cytoplasm, possibly resulting in neuronal cell death in patients with FTLD-U or ALS. The inositol pyrophosphate known as diphosphoinositol pentakisphosphate (InsP7) contains highly energetic pyrophosphate bonds. We previously reported that inositol hexakisphosphate kinase type 2 (InsP6K2), which converts inositol hexakisphosphate (InsP6) to InsP7, mediates cell death in mammalian cells. Moreover, InsP6K2 is translocated from the nucleus to the cytosol during apoptosis. In this study, we verified that phosphorylated TDP-43 co-localized and co-bound with InsP6K2 in the cytoplasm of anterior horn cells of the spinal cord. Furthermore, we verified that cell death was augmented in the presence of cytoplasmic TDP-43 aggregations and activated InsP6K2. However, cells with only cytoplasmic TDP-43 aggregation survived because Akt activity increased. In the presence of both TDP-43 aggregation and activated InsP6K2 in the cytoplasm of cells, the expression levels of HSP90 and casein kinase 2 decreased, as the activity of Akt decreased. These conditions may promote cell death. Thus, InsP6K2 could cause neuronal cell death in patients with FTLD-U or ALS. Moreover, InsP6K2 plays an important role in a novel cell death pathway present in FTLD-U and ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett M, Onnebo SM, Azevedo C, Saiardi A (2006) Inositol pyrophosphates: metabolism and signaling. Cell Mol Life Sci 63:552–564

    Article  CAS  PubMed  Google Scholar 

  2. Losito O, Szijgyarto Z, Resnick AC, Saiardi A (2009) Inositol pyrophosphates and their unique metabolic complexity: analysis by gel electrophoresis. PLoS ONE 4, e5580

    Article  PubMed  PubMed Central  Google Scholar 

  3. Saiardi A, Erdjument-Bromage H, Snowman AM, Tempst P, Snyder SH (1999) Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Cur Biol 9:1323–1326

    Article  CAS  Google Scholar 

  4. Schell MJ, Letcher AJ, Brearley CA, Biber J, Murer H, Irvine RF (1999) PiUS (Pi uptake stimulator) is an inositol hexakisphosphate kinase. FEBS Lett 461:169–172

    Article  CAS  PubMed  Google Scholar 

  5. Saiardi A, Caffrey JJ, Snyder SH, Shears S (2000) The inositol hexakisphosphate kinase family. Catalytic flexibility and function in yeast vacuole biogenesis. J Biol Chem 275:24686–24692

    Article  CAS  PubMed  Google Scholar 

  6. Saiardi A, Nagata E, Luo HR, Snowman AM, Snyder SH (2001) Identification and characterization of a novel inositol hexakisphosphate kinase. J Biol Chem 276:39179–39185

    Article  CAS  PubMed  Google Scholar 

  7. Saiardi A, Sciambi C, McCaffery JM, Wendland B, Snyder SH (2002) Inositol pyrophosphates regulate endocytic trafficking. Proc Natl Acad Sci USA 99:14206–14211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saiardi A, Resnick AC, Snowman AM, Wendland B, Snyder SH (2005) Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc Natl Acad Sci USA 102:1911–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rhodes D, Fairall L, Simonsson T, Court R, Chapman L (2002) Telomere architecture. EMBO Rep 3:1139–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nagata E, Saiardi A, Tsukamoto H, Satoh T, Itoh Y, Itoh J, Margolis RL, Takizawa S et al (2011) Inositol hexakisphosphate kinases induce cell death in Huntington disease. J Biol Chem 286:26680–26686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nelson LM (1995) Epidemiology of ALS. Clin Neurosci 3:327–331

    PubMed  Google Scholar 

  12. Cleveland DW, Rothstein JD (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2:806–819

    Article  CAS  PubMed  Google Scholar 

  13. Rosen DR (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  14. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611

    Article  CAS  PubMed  Google Scholar 

  15. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  CAS  PubMed  Google Scholar 

  16. Chakraborty A, Koldobskiy MA, Sixt KM, Juluri KR, Mustafa AK, Snowman AM, van Rossum DB, Patterson RL et al (2008) HSP90 physiologically binds IP6K2 and inhibits its catalytic activity. Proc Natl Acad Sci USA 105:1134–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luo HR, Huang YE, Chen JC, Saiardi A, Iijima M, Ye K, Huang Y, Nagata E et al (2003) Inositol pyrophosphates mediate chemotaxis in Dictyostelium via pleckstrin homology domain-PtdIns(3,4,5)P3 interactions. Cell 114:559–572

    Article  CAS  PubMed  Google Scholar 

  18. Chakraborty A, Werner JK, Koldobskiy MA, Mustafa AK, Juluri KR, Pietropaoli J, Snowman AM, Snyder SH (2011) Casein kinase-2 mediates cell survival through phosphorylation and degradation of inositol hexakisphosphate kinase-2. Proc Natl Acad Sci USA 108:2205–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 10:761–772

    Article  Google Scholar 

  20. Sharp S, Workman P (2006) Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 95:323–348

    Article  CAS  PubMed  Google Scholar 

  21. Maloney A, Workman P (2002) HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2:3–24

    Article  CAS  PubMed  Google Scholar 

  22. Zhang YJ, Gendron TF, Xu YF, Ko LW, Yen SH, Petrucelli L (2010) Phosphorylation regulates proteasomal-mediated degradation and solubility of TAR DNA binding protein-43 C-terminal fragments. Mol Neurodegener 5:1–13

    Article  Google Scholar 

  23. Chakraborty A, Koldobskiy MA, Bello NT, Maxwell M, Potter JJ, Juluri KR, Maag D, Kim S et al (2010) Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 143:897–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li YR, King OD, Shorter J, Gitler AD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201:361–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Higashi S, Kabuta T, Nagai Y, Tsuchiya Y, Akiyama H, Wada K (2013) TDP-43 associates with stalled ribosomes and contributes to cell survival during cellular stress. J Neurochem 126:288–300

    Article  CAS  PubMed  Google Scholar 

  26. Nonaka T, Arai T, Buratti E, Baralle FE, Akiyama H, Hasegawa M (2009) Phosphorylated and ubiquitinated TDP-43 pathological inclusions in ALS and FTLD-U are recapitulated in SH-SY5Y cells. FEBS Lett 583:394–400

    Article  CAS  PubMed  Google Scholar 

  27. Nonaka T, Kametani F, Arai T, Akiyama H, Hasegawa M (2009) Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum Mol Genet 18:3353–3364

    Article  CAS  PubMed  Google Scholar 

  28. Yamashita M, Nonaka T, Hirai S, Miwa A, Okado H, Arai T, Hosokawa M, Akiyama H et al (2014) Distinct pathways leading to TDP-43-induced cellular dysfunctions. Hum Mol Genet 23:4345–4356

    Article  CAS  PubMed  Google Scholar 

  29. Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878

    Article  CAS  PubMed  Google Scholar 

  30. Wang HY, Wang IF, Bose J, Shen CK (2004) Structural diversity and functional implications of eukaryotic TDP gene family. Genomics 83:130–139

    Article  CAS  PubMed  Google Scholar 

  31. Ayala YM, Zago P, D’Ambrogo A, Xu YF, Petrucelli L, Buratti E, Baralle FE (2008) Structural determinants of the cellular localization and shuttling of TDP-43. J Cell Sci 121:3778–3785

    Article  CAS  PubMed  Google Scholar 

  32. Winton MJ, Igaz LM, Wong MM, Knong LK, Trojanowski JQ, Lee VM (2008) Disturbance of nuclear and cytoplasmic TAR DNA-binding protein gate formation. J Biol Chem 283:13302–13309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sorokin AV, Kim ER, Ovchinnikov LP (2007) Nucleocytoplasmic transport of proteins. Biochemistry (Mosc) 72:1439–1457

    Article  CAS  Google Scholar 

  34. Terry LI, Shows EB, Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318:1412–1416

    Article  CAS  PubMed  Google Scholar 

  35. Nishimura AL, Zupunski V, Troakes C, Kathe C, Fratta P, Howell M, Gallo JM, Hortobágyi T et al (2010) Nuclear import impairment causes cytoplasmic trans-activation response DNA-binding protein accumulation and is associated with frontotemporal lobar degeneration. Brain 133:1763–1771

    Article  PubMed  Google Scholar 

  36. Stewart M (2010) Nuclear export of mRNA. Trends Boil Sci 34:609–617

    Article  Google Scholar 

  37. Zenklusen D, Stutz F (2001) Nuclear export of mRNA. FEBS Lett 498:150–156

    Article  CAS  PubMed  Google Scholar 

  38. Folkmann AW, Noble KN, Cole CN, Wente SR (2011) Dbp5, Gle1-IP6 and Nup159. Nucleus 2:540–548

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ledoux S, Guthrie C (2011) Regulation of the Dbp5 ATPase cycle in mRNP remodeling at the nuclear pore: a lively new paradigm for DEAD-box proteins. Gene Dev 25:1109–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Strawn LA, Shen T, Wente SR (2001) The GLFG regions of Nup116p and Nup100p serve as binding sites for both Kap95p and Mex67p at the nuclear pore complex. J Biol Chem 276:6445–6452

    Article  CAS  PubMed  Google Scholar 

  41. Saiardi A, Caffrey JJ, Snyder SH, Shears S (2000) Inositol polyphosphate multikinase (ArgRRIII9 determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett 468:28–32

    Article  CAS  PubMed  Google Scholar 

  42. Nagata E, Luo HR, Saiardi A, Bae BI, Suzuki N, Snyder SH (2005) Inositol hexakisphosphate kinase-2, a physiologic mediator of cell death. J Biol Chem 280:1634–1640

    Article  CAS  PubMed  Google Scholar 

  43. Ishii A, Nonaka T, Taniguchi S, Saito T, Arai T, Mann D, Iwatsubo T, Hisanaga S et al (2007) Casein kinase 2 is the major enzyme in brain that phosphorylates Ser129 of human alpha-synuclein: implication for alpha-synucleinopathies. FEBS Lett 581:4711–4717

    Article  CAS  PubMed  Google Scholar 

  44. Li HY, Yeh PA, Chiu HC, Tang CY, Tu BP (2011) Hyperphosphorylation as a defence mechanism to reduce TDP-43 aggregation. PLoS ONE 6, e23075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interests

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichiro Nagata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagata, E., Nonaka, T., Moriya, Y. et al. Inositol Hexakisphosphate Kinase 2 Promotes Cell Death in Cells with Cytoplasmic TDP-43 Aggregation. Mol Neurobiol 53, 5377–5383 (2016). https://doi.org/10.1007/s12035-015-9470-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9470-1

Keywords

Navigation