Skip to main content

Advertisement

Log in

Effects of Ghrelin on the Proteolytic Pathways of Alzheimer’s Disease Neuronal Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ghrelin is an orexigenic hormone with a role in the onset and progression of neurodegenerative disorders. It has been recently associated to Alzheimer’s disease (AD) for its neuroprotective and anti-apoptotic activity. In the present study, we dissected the effect of ghrelin treatment on the two major intracellular proteolytic pathways, the ubiquitin-proteasome system (UPS) and autophagy, in cellular models of AD (namely SH-SY5Y neuroblastoma cells stably transfected with either the wild-type AβPP gene or the 717 valine-to-glycine AβPP-mutated gene). Ghrelin showed a growth-promoting effect on neuronal cells inducing also time-dependent modifications of the growth hormone secretagogue receptor type 1 (GHS-R1) expression. Interestingly, we demonstrated for the first time that ghrelin was able to activate the proteasome in neural cells playing also a role in the interplay between the UPS and autophagy. Our data provide a novel mechanism by which circulating hormones control neural homeostasis through the regulation of proteolytic pathways implicated in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

UPS:

Ubiquitin-proteasome system

GHS-R1:

Growth hormone secretagogue receptor type 1

GOAT:

Ghrelin O-acyltransferase

Aβ:

Amyloid-β

AβPP:

Amyloid-β precursor protein

References

  1. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762):656–660. doi:10.1038/45230

    Article  CAS  PubMed  Google Scholar 

  2. Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M et al (2003) The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37(4):649–661

    Article  CAS  PubMed  Google Scholar 

  3. Diano S, Farr SA, Benoit SC, McNay EC, da Silva I, Horvath B, Gaskin FS, Nonaka N et al (2006) Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 9(3):381–388

    Article  CAS  PubMed  Google Scholar 

  4. Gahete MD, Cordoba-Chacon J, Kineman RD, Luque RM, Castano JP (2011) Role of ghrelin system in neuroprotection and cognitive functions: implications in Alzheimer’s disease. Peptides 32(11):2225–2228. doi:10.1016/j.peptides.2011.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stengel A, Tache Y (2009) Regulation of food intake: the gastric X/A-like endocrine cell in the spotlight. Curr Gastroenterol Rep 11(6):448–454

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen CY, Asakawa A, Fujimiya M, Lee SD, Inui A (2009) Ghrelin gene products and the regulation of food intake and gut motility. Pharmacol Rev 61(4):430–481. doi:10.1124/pr.109.001958

    Article  CAS  PubMed  Google Scholar 

  7. Ferrini F, Salio C, Lossi L, Merighi A (2009) Ghrelin in central neurons. Curr Neuropharmacol 7(1):37–49. doi:10.2174/157015909787602779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McNay EC (2007) Insulin and ghrelin: peripheral hormones modulating memory and hippocampal function. Curr Opin Pharmacol 7(6):628–632. doi:10.1016/j.coph.2007.10.009

    Article  CAS  PubMed  Google Scholar 

  9. Gomes S, Martins I, Fonseca AC, Oliveira CR, Resende R, Pereira CM (2014) Protective effect of leptin and ghrelin against toxicity induced by amyloid-beta oligomers in a hypothalamic cell line. J Neuroendocrinol 26(3):176–185. doi:10.1111/jne.12138

    Article  CAS  PubMed  Google Scholar 

  10. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344. doi:10.1056/NEJMra0909142

    Article  CAS  PubMed  Google Scholar 

  11. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    CAS  PubMed  Google Scholar 

  12. Proto C, Romualdi D, Cento RM, Spada RS, Di Mento G, Ferri R, Lanzone A (2006) Plasma levels of neuropeptides in Alzheimer’s disease. Gynecol Endocrinol 22(4):213–218. doi:10.1080/09513590500519385

    Article  CAS  PubMed  Google Scholar 

  13. Gahete MD, Rubio A, Cordoba-Chacon J, Gracia-Navarro F, Kineman RD, Avila J, Luque RM, Castano JP (2010) Expression of the ghrelin and neurotensin systems is altered in the temporal lobe of Alzheimer’s disease patients. J Alzheimers Dis 22(3):819–828. doi:10.3233/JAD-2010-100873

    Article  CAS  PubMed  Google Scholar 

  14. Moon M, Choi JG, Nam DW, Hong HS, Choi YJ, Oh MS, Mook-Jung I (2011) Ghrelin ameliorates cognitive dysfunction and neurodegeneration in intrahippocampal amyloid-beta1-42 oligomer-injected mice. J Alzheimers Dis 23(1):147–159. doi:10.3233/JAD-2010-101263

    CAS  PubMed  Google Scholar 

  15. Zhang R, Yang G, Wang Q, Guo F, Wang H (2013) Acylated ghrelin protects hippocampal neurons in pilocarpine-induced seizures of immature rats by inhibiting cell apoptosis. Mol Biol Rep 40(1):51–58. doi:10.1007/s11033-012-1993-1

    Article  PubMed  Google Scholar 

  16. Chung H, Kim E, Lee DH, Seo S, Ju S, Lee D, Kim H, Park S (2007) Ghrelin inhibits apoptosis in hypothalamic neuronal cells during oxygen-glucose deprivation. Endocrinology 148(1):148–159. doi:10.1210/en.2006-0991

    Article  CAS  PubMed  Google Scholar 

  17. McKinnon C, Tabrizi SJ (2014) The ubiquitin-proteasome system in neurodegeneration. Antioxid Redox Signal. doi:10.1089/ars.2013.5802

    PubMed  Google Scholar 

  18. Ulamek-Koziol M, Furmaga-Jablonska W, Januszewski S, Brzozowska J, Scislewska M, Jablonski M, Pluta R (2013) Neuronal autophagy: self-eating or self-cannibalism in Alzheimer’s disease. Neurochem Res 38(9):1769–1773. doi:10.1007/s11064-013-1082-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nixon RA (2014) Alzheimer neurodegeneration, autophagy, and Abeta secretion: the ins and outs (comment on DOI 10.1002/bies.201400002). Bioessays 36(6):547. doi:10.1002/bies.201400064

    Article  CAS  PubMed  Google Scholar 

  20. Nixon RA, Yang DS (2011) Autophagy failure in Alzheimer’s disease—locating the primary defect. Neurobiol Dis 43(1):38–45. doi:10.1016/j.nbd.2011.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17(24):7151–7160. doi:10.1093/emboj/17.24.7151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kragh CL, Ubhi K, Wyss-Coray T, Masliah E (2012) Autophagy in dementias. Brain Pathol 22(1):99–109. doi:10.1111/j.1750-3639.2011.00545.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cecarini V, Bonfili L, Cuccioloni M, Mozzicafreddo M, Rossi G, Buizza L, Uberti D, Angeletti M et al (2012) Crosstalk between the ubiquitin-proteasome system and autophagy in a human cellular model of Alzheimer’s disease. Biochim Biophys Acta 1822(11):1741–1751. doi:10.1016/j.bbadis.2012.07.015

    Article  CAS  PubMed  Google Scholar 

  24. Cecarini V, Bonfili L, Cuccioloni M, Mozzicafreddo M, Rossi G, Keller JN, Angeletti M, Eleuteri AM (2014) Wild type and mutant amyloid precursor proteins influence downstream effects of proteasome and autophagy inhibition. Biochim Biophys Acta 1842(2):127–134. doi:10.1016/j.bbadis.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  25. Bonfili L, Cuccioloni M, Cecarini V, Mozzicafreddo M, Palermo FA, Cocci P, Angeletti M, Eleuteri AM (2013) Ghrelin induces apoptosis in colon adenocarcinoma cells via proteasome inhibition and autophagy induction. Apoptosis 18(10):1188–1200. doi:10.1007/s10495-013-0856-0

    Article  CAS  PubMed  Google Scholar 

  26. Orlowski M, Michaud C (1989) Pituitary multicatalytic proteinase complex. Specificity of components and aspects of proteolytic activity. Biochemistry 28(24):9270–9278

    Article  CAS  PubMed  Google Scholar 

  27. Pfleiderer G (1970) Isolation of an aminopeptidase from kidney particles. Methods in enzymology. Academic, New York

    Google Scholar 

  28. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  29. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  30. Amici M, Bonfili L, Spina M, Cecarini V, Calzuola I, Marsili V, Angeletti M, Fioretti E et al (2008) Wheat sprout extract induces changes on 20S proteasomes functionality. Biochimie 90(5):790–801. doi:10.1016/j.biochi.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  31. Tchoupe JR, Moreau T, Gauthier F, Bieth JG (1991) Photometric or fluorometric assay of cathepsin B, L and H and papain using substrates with an aminotrifluoromethylcoumarin leaving group. Biochim Biophys Acta 1076:149–151

    Article  CAS  PubMed  Google Scholar 

  32. Zampagni M, Evangelisti E, Cascella R, Liguri G, Becatti M, Pensalfini A, Uberti D, Cenini G et al (2010) Lipid rafts are primary mediators of amyloid oxidative attack on plasma membrane. J Mol Med (Berl) 88(6):597–608. doi:10.1007/s00109-010-0603-8

    Article  CAS  Google Scholar 

  33. Fedele G, Di Girolamo M, Recine U, Palazzo R, Urbani F, Horenstein AL, Malavasi F, Ausiello CM (2013) CD38 ligation in peripheral blood mononuclear cells of myeloma patients induces release of protumorigenic IL-6 and impaired secretion of IFNgamma cytokines and proliferation. Mediat Inflamm 2013:564687. doi:10.1155/2013/564687

    Article  Google Scholar 

  34. Tsujimoto Y (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells: Dev Mol Cell Mech 3(11):697–707

    Article  CAS  Google Scholar 

  35. Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M (1999) Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 274:22932–22940

    Article  CAS  PubMed  Google Scholar 

  36. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479. doi:10.1146/annurev.biochem.67.1.425

    Article  CAS  PubMed  Google Scholar 

  37. Reed SI (2003) Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nat Rev Mol Cell Biol 4(11):855–864. doi:10.1038/nrm1246

    Article  CAS  PubMed  Google Scholar 

  38. Kang R, Zeh HJ, Lotze MT, Tang D (2001) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18(4):571–580. doi:10.1038/cdd.2010.191

    Article  Google Scholar 

  39. Lamark T, Kirkin V, Dikic I, Johansen T (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8(13):1986–1990

    Article  CAS  PubMed  Google Scholar 

  40. Cao Y, Klionsky DJ (2007) Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 17(10):839–849. doi:10.1038/cr.2007.78

    Article  CAS  PubMed  Google Scholar 

  41. Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452:181–197. doi:10.1016/S0076-6879(08)03612-4

    Article  PubMed  Google Scholar 

  42. Mort JS, Buttle DJ (1997) Cathepsin B. Int J Biochem Cell Biol 29(5):715–720

    Article  CAS  PubMed  Google Scholar 

  43. Glabe C (2001) Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. J Mol Neurosci 17(2):137–145. doi:10.1385/JMN:17:2:137

    Article  CAS  PubMed  Google Scholar 

  44. Kent BA, Beynon AL, Hornsby AK, Bekinschtein P, Bussey TJ, Davies JS, Saksida LM (2015) The orexigenic hormone acyl-ghrelin increases adult hippocampal neurogenesis and enhances pattern separation. Psychoneuroendocrinology 51:431–439. doi:10.1016/j.psyneuen.2014.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miegueu P, St Pierre D, Broglio F, Cianflone K (2011) Effect of desacyl Ghrelin, obestatin and related peptides on triglyceride storage, metabolism and GHSR signaling in 3T3-L1 adipocytes. J Cell Biochem 112(2):704–714. doi:10.1002/jcb.22983

    Article  CAS  PubMed  Google Scholar 

  46. Pettersson I, Muccioli G, Granata R, Deghenghi R, Ghigo E, Ohlsson C, Isgaard J (2002) Natural (ghrelin) and synthetic (hexarelin) GH secretagogues stimulate H9c2 cardiomyocyte cell proliferation. J Endocrinol 175(1):201–209

    Article  CAS  PubMed  Google Scholar 

  47. Mazzocchi G, Neri G, Rucinski M, Rebuffat P, Spinazzi R, Malendowicz LK, Nussdorfer GG (2004) Ghrelin enhances the growth of cultured human adrenal zona glomerulosa cells by exerting MAPK-mediated proliferogenic and antiapoptotic effects. Peptides 25(8):1269–1277. doi:10.1016/j.peptides.2004.05.011

    Article  CAS  PubMed  Google Scholar 

  48. Ghe C, Cassoni P, Catapano F, Marrocco T, Deghenghi R, Ghigo E, Muccioli G, Papotti M (2002) The antiproliferative effect of synthetic peptidyl GH secretagogues in human CALU-1 lung carcinoma cells. Endocrinology 143(2):484–491. doi:10.1210/endo.143.2.8654

    Article  CAS  Google Scholar 

  49. Xu Y, Pang X, Dong M, Wen F, Zhang Y (2013) Ghrelin inhibits ovarian epithelial carcinoma cell proliferation in vitro. Oncol Rep 30(5):2063–2070. doi:10.3892/or.2013.2692

    CAS  PubMed  Google Scholar 

  50. Volante M, Allia E, Fulcheri E, Cassoni P, Ghigo E, Muccioli G, Papotti M (2003) Ghrelin in fetal thyroid and follicular tumors and cell lines: expression and effects on tumor growth. Am J Pathol 162(2):645–654. doi:10.1016/S0002-9440(10)63858-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cassoni P, Papotti M, Ghe C, Catapano F, Sapino A, Graziani A, Deghenghi R, Reissmann T et al (2001) Identification, characterization, and biological activity of specific receptors for natural (ghrelin) and synthetic growth hormone secretagogues and analogs in human breast carcinomas and cell lines. J Clin Endocrinol Metab 86(4):1738–1745. doi:10.1210/jcem.86.4.7402

    CAS  PubMed  Google Scholar 

  52. Chondrogianni N, Tzavelas C, Pemberton AJ, Nezis IP, Rivett AJ, Gonos ES (2005) Overexpression of proteasome beta5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J Biol Chem 280(12):11840–11850. doi:10.1074/jbc.M413007200

    Article  CAS  PubMed  Google Scholar 

  53. Katsiki M, Chondrogianni N, Chinou I, Rivett AJ, Gonos ES (2007) The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation Res 10(2):157–172. doi:10.1089/rej.2006.0513

    Article  CAS  PubMed  Google Scholar 

  54. Stoyanova II (2014) Ghrelin: a link between ageing, metabolism and neurodegenerative disorders. Neurobiol Dis 72(Pt A):72–83. doi:10.1016/j.nbd.2014.08.026

    Article  CAS  PubMed  Google Scholar 

  55. Sulistio YA, Heese K (2015) The ubiquitin-proteasome system and molecular chaperone deregulation in Alzheimer’s disease. Mol Neurobiol. doi:10.1007/s12035-014-9063-4

    PubMed  Google Scholar 

  56. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145. doi:10.1074/jbc.M702824200

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

The research did not involve human participants and/or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Cecarini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cecarini, V., Bonfili, L., Cuccioloni, M. et al. Effects of Ghrelin on the Proteolytic Pathways of Alzheimer’s Disease Neuronal Cells. Mol Neurobiol 53, 3168–3178 (2016). https://doi.org/10.1007/s12035-015-9227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9227-x

Keywords

Navigation