Skip to main content
Log in

Inhibition of Rac1 Activity in the Hippocampus Impairs the Forgetting of Contextual Fear Memory

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Fear is crucial for survival, whereas hypermnesia of fear can be detrimental. Inhibition of the Rac GTPase is recently reported to impair the forgetting of initially acquired memory in Drosophila. Here, we investigated whether inhibition of Rac1 activity in rat hippocampus could contribute to the hypermnesia of contextual fear. We found that spaced but not massed training of contextual fear conditioning caused inhibition of Rac1 activity in the hippocampus and heightened contextual fear. Furthermore, intrahippocampal injection of the Rac1 inhibitor NSC23766 heightened contextual fear in massed training, while Rac1 activator CN04-A weakened contextual fear in spaced training rats. Our study firstly demonstrates that contextual fear memory in rats is actively regulated by Rac1 activity in the hippocampus, which suggests that the forgetting impairment of traumatic events in posttraumatic stress disorder may be contributed to the pathological inhibition of Rac1 activity in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PTSD:

Posttraumatic stress disorder

References

  1. Johansen JP, Cain CK, Ostroff LE, LeDoux JE (2011) Molecular mechanisms of fear learning and memory. Cell 147(3):509–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Yehuda R, LeDoux J (2007) Response variation following trauma: a translational neuroscience approach to understanding PTSD. Neuron 56(1):19–32

    Article  CAS  PubMed  Google Scholar 

  3. Eichenbaum H (2000) A cortical-hippocampal system for declarative memory. Nat Rev Neurosci 1(1):41–50

    Article  CAS  PubMed  Google Scholar 

  4. Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106(2):274–285

    Article  CAS  PubMed  Google Scholar 

  5. Grillon C, Southwick SM, Charney DS (1996) The psychobiological basis of posttraumatic stress disorder. Mol Psychiatry 1(4):278–297

    CAS  PubMed  Google Scholar 

  6. Mahan AL, Ressler KJ (2012) Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 35(1):24–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Wixted JT (2004) The psychology and neuroscience of forgetting. Annu Rev Psychol 55:235–269

    Article  PubMed  Google Scholar 

  8. Shuai Y, Lu B, Hu Y, Wang L, Sun K, Zhong Y (2010) Forgetting is regulated through Rac activity in Drosophila. Cell 140(4):579–589

    Article  CAS  PubMed  Google Scholar 

  9. O'Kane EM, Stone TW, Morris BJ (2003) Distribution of Rho family GTPases in the adult rat hippocampus and cerebellum. Brain Res Mol Brain Res 114(1):1–8

    Article  PubMed  Google Scholar 

  10. Olenik C, Barth H, Just I, Aktories K, Meyer DK (1997) Gene expression of the small GTP-binding proteins RhoA, RhoB, Rac1, and Cdc42 in adult rat brain. Brain Res Mol Brain Res 52(2):263–269

    Article  CAS  PubMed  Google Scholar 

  11. Haditsch U, Leone DP, Farinelli M, Chrostek-Grashoff A, Brakebusch C, Mansuy IM et al (2009) A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Mol Cell Neurosci 41(4):409–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Martinez LA, Tejada-Simon MV (2011) Pharmacological inactivation of the small GTPase Rac1 impairs long-term plasticity in the mouse hippocampus. Neuropharmacology 61(1–2):305–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science 256(5057):675–677

    Article  CAS  PubMed  Google Scholar 

  14. Naqib F, Sossin WS, Farah CA (2012) Molecular determinants of the spacing effect. Neural Plast 2012:581291

    PubMed Central  PubMed  Google Scholar 

  15. Ebbinghaus H (1913) Memory: A contribution to experimental psychology (H. A. Ruger & C. E. Bussenius, Trans.). N Y Columbia Univ Teach Coll 39(2):358–358

    Google Scholar 

  16. Bai H-Y, Cao J, Liu N, Xu L, Luo J-H (2009) Sexual behavior modulates contextual fear memory through dopamine D1/D5 receptors. Hippocampus 19(3):289–298

    Article  CAS  PubMed  Google Scholar 

  17. Randolf Menzel GM, Menzel R, Greggers U (2001) Massed and spaced learning in honeybees: the role of CS, US, the intertrial interval, and the test interval. Learn Mem 8:198–208

    Article  PubMed Central  Google Scholar 

  18. Robert C, Barnet NJG, Miller RR (1995) Trial spacing effects in Pavlovian conditioning: a role for local context. Anim Learn Behav 23(3):340–348

    Article  Google Scholar 

  19. Blanchard DC, Blanchard RJ (1972) Innate and conditioned reactions to threat in rats with amygdaloid lesions. J Comp Physiol Psychol 81(2):281–290

    Article  CAS  PubMed  Google Scholar 

  20. Li Z, Zhou Q, Li L, Mao R, Wang M, Peng W et al (2005) Effects of unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm on synaptic plasticity in the hippocampal CA1 area in vivo. Hippocampus 15(6):815–824

    Article  PubMed  Google Scholar 

  21. Mark E, Bouton RCB (1980) Conditioned fear assessed by freezing and by the suppression of three different baselines. Anim Learn Behav 8(3):429–434

    Article  Google Scholar 

  22. Castillo-Lluva S, Tatham MH, Jones RC, Jaffray EG, Edmondson RD, Hay RT et al (2010) SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat Cell Biol 12(11):1078–1085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Chen LY, Rex CS, Babayan AH, Kramar EA, Lynch G, Gall CM et al (2010) Physiological activation of synaptic Rac>PAK (p-21 activated kinase) signaling is defective in a mouse model of fragile X syndrome. J Neurosci Off J Soc Neurosci 30(33):10977–10984

    Article  CAS  Google Scholar 

  24. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y (2004) Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A 101(20):7618–7623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. APA (1994) American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Press, Washington

    Google Scholar 

  26. Pagani MR, Oishi K, Gelb BD, Zhong Y (2009) The phosphatase SHP2 regulates the spacing effect for long-term memory induction. Cell 139(1):186–198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. McEwen BS (2000) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886(1–2):172–189

    Article  CAS  PubMed  Google Scholar 

  28. Christoffel DJ, Golden SA, Russo SJ (2011) Structural and synaptic plasticity in stress-related disorders. Rev Neurosci 22(5):535–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Golden SA, Christoffel DJ, Heshmati M, Hodes GE, Magida J, Davis K et al (2013) Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nat Med 19(3):337–344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP et al (2002) Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci 5(11):1242–1247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Dudai Y (2002) Molecular bases of long-term memories: a question of persistence. Curr Opin Neurobiol 12(2):211–216

    Article  CAS  PubMed  Google Scholar 

  32. Lamprecht R, LeDoux J (2004) Structural plasticity and memory. Nat Rev Neurosci 5(1):45–54

    Article  CAS  PubMed  Google Scholar 

  33. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    Article  CAS  PubMed  Google Scholar 

  34. Xu L, Anwyl R, Rowan MJ (1998) Spatial exploration induces a persistent reversal of long-term potentiation in rat hippocampus. Nature 394(6696):891–894

    Article  CAS  PubMed  Google Scholar 

  35. Jovanovic T, Ressler KJ (2010) How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am J Psychiatry 167(6):648–662

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank LP Wang for technical assistance and Lab members for their critical comments. This work was supported by the National Basic Research Program of China (2013CB835103 and 2009CB918303), Strategic Priority Research Program of the Chinese Academy of Science (XDB02020002), NSFC-CIHR Joint Grant (81161120536), National Natural Science Foundation of China (31100786, 30860089, 930830046, 81171286, 91232714, 81460216, U1032605, and U1132602), and Science and Technology Program of Yunnan Province (2013GA003 and 2013FA048). There are no competing financial interests in relation to the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingjiang Li or Lin Xu.

Additional information

Lizhu Jiang and Rongrong Mao contribute equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 67 kb)

ESM 2

(TIFF 4540 kb)

ESM 3

(TIFF 1816 kb)

ESM 4

(TIFF 478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Mao, R., Zhou, Q. et al. Inhibition of Rac1 Activity in the Hippocampus Impairs the Forgetting of Contextual Fear Memory. Mol Neurobiol 53, 1247–1253 (2016). https://doi.org/10.1007/s12035-015-9093-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9093-6

Keywords

Navigation