Skip to main content
Log in

PAS Kinase as a Nutrient Sensor in Neuroblastoma and Hypothalamic Cells Required for the Normal Expression and Activity of Other Cellular Nutrient and Energy Sensors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

PAS kinase (PASK) is a nutrient sensor that is highly conserved throughout evolution. PASK-deficient mice reveal a metabolic phenotype similar to that described in S6 kinase-1 S6K1-deficient mice that are protected against obesity. Hypothalamic metabolic sensors, such as AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR), play an important role in feeding behavior, the homeostasis of body weight, and energy balance. These sensors respond to changes in nutrient levels in the hypothalamic areas involved in feeding behavior and in neuroblastoma N2A cells, and we have recently reported that those effects are modulated by the anorexigenic peptide glucagon-like peptide-1 (GLP-1). Here, we identified PASK in both N2A cells and rat VMH and LH areas and found that its expression is regulated by glucose and GLP-1. High levels of glucose decreased Pask gene expression. Furthermore, PASK-silenced N2A cells record an impaired response by the AMPK and mTOR/S6K1 pathways to changes in glucose levels. Likewise, GLP-1 effect on the activity of AMPK, S6K1, and other intermediaries of both pathways and the regulatory role at the level of gene expression were also blocked in PASK-silenced cells. The absence of response to low glucose concentrations in PASK-silenced cells correlates with increased ATP content, low expression of mRNA coding for AMPK upstream kinase LKB1, and enhanced activation of S6K1. Our findings indicate that, at least in N2A cells, PASK is a key kinase in GLP-1 actions and exerts a coordinated response with the other metabolic sensors, suggesting that PASK might play an important role in feeding behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Grose JH, Smith TL, Sabic H, Rutter J (2007) Yeast PAS kinase coordinates glucose partitioning in response to metabolic and cell integrity signaling. EMBO J 26(23):4824–4830

    Article  CAS  PubMed  Google Scholar 

  2. Smith TL, Rutter J (2007) Regulation of glucose partitioning by PAS kinase and Ugp1 phosphorylation. Mol Cell 26(4):491–499

    Article  CAS  PubMed  Google Scholar 

  3. Hao HX, Rutter J (2008) The role of PAS kinase in regulating energy metabolism. IUBMB Life 60(4):204–209

    Article  CAS  PubMed  Google Scholar 

  4. Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  CAS  PubMed  Google Scholar 

  5. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262

    Article  CAS  PubMed  Google Scholar 

  6. Rutter GA, Da Silva XG, Leclerc I (2003) Roles of 5′-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem J 375(Pt 1):1–16

    CAS  PubMed  Google Scholar 

  7. Alessi DR, Pearce LR, Garcia-Martinez JM (2009) New insights into mTOR signaling: mTORC2 and beyond. Sci Signal 2(67):pe27

    PubMed  Google Scholar 

  8. Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285(19):14071–14077

    Article  CAS  PubMed  Google Scholar 

  9. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Proud CG (2002) Regulation of mammalian translation factors by nutrients. Eur J Biochem 269(22):5338–5349

    Article  CAS  PubMed  Google Scholar 

  11. Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15(7):807–826

    Article  CAS  PubMed  Google Scholar 

  12. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590

    Article  CAS  PubMed  Google Scholar 

  13. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. da Silva XG, Rutter J, Rutter GA (2004) Involvement of Per-Arnt-Sim (PAS) kinase in the stimulation of preproinsulin and pancreatic duodenum homeobox 1 gene expression by glucose. Proc Natl Acad Sci U S A 101(22):8319–8324

    Article  Google Scholar 

  15. Borter E, Niessen M, Zuellig R, Spinas GA, Spielmann P, Camenisch G, Wenger RH (2007) Glucose-stimulated insulin production in mice deficient for the PAS kinase PASKIN. Diabetes 56(1):113–117

    Article  CAS  PubMed  Google Scholar 

  16. Katschinski DM, Marti HH, Wagner KF, Shibata J, Eckhardt K, Martin F, Depping R, Paasch U, Gassmann M, Ledermann B, Desbaillets I, Wenger RH (2003) Targeted disruption of the mouse PAS domain serine/threonine kinase PASKIN. Mol Cell Biol 23(19):6780–6789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hao HX, Cardon CM, Swiatek W, Cooksey RC, Smith TL, Wilde J, Boudina S, Abel ED, McClain DA, Rutter J (2007) PAS kinase is required for normal cellular energy balance. Proc Natl Acad Sci U S A 104(39):15466–15471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. MacDonald PE, Rorsman P (2011) Per-arnt-sim (PAS) domain kinase (PASK) as a regulator of glucagon secretion. Diabetologia 54(4):719–721

    Article  CAS  PubMed  Google Scholar 

  19. Schlafli P, Borter E, Spielmann P, Wenger RH (2009) The PAS-domain kinase PASKIN: a new sensor in energy homeostasis. Cell Mol Life Sci 66(5):876–883

    Article  CAS  PubMed  Google Scholar 

  20. Blonde L, Klein EJ, Han J, Zhang B, Mac SM, Poon TH, Taylor KL, Trautmann ME, Kim DD, Kendall DM (2006) Interim analysis of the effects of exenatide treatment on A1C, weight and cardiovascular risk factors over 82 weeks in 314 overweight patients with type 2 diabetes. Diabetes Obes Metab 8(4):436–447

    Article  CAS  PubMed  Google Scholar 

  21. Niswender K (2010) Diabetes and obesity: therapeutic targeting and risk reduction—a complex interplay. Diabetes Obes Metab 12(4):267–287

    Article  PubMed  Google Scholar 

  22. Hurtado-Carneiro V, Sanz C, Roncero I, Vazquez P, Blazquez E, Alvarez E (2012) Glucagon-like peptide 1 (GLP-1) can reverse AMP-activated protein kinase (AMPK) and S6 kinase (P70S6K) activities induced by fluctuations in glucose levels in hypothalamic areas involved in feeding behaviour. Mol Neurobiol 45(2):348–361

    Article  CAS  PubMed  Google Scholar 

  23. Leon Y, Sanz C, Giraldez F, Varela-Nieto I (1998) Induction of cell growth by insulin and insulin-like growth factor-I is associated with Jun expression in the otic vesicle. J Comp Neurol 398(3):323–332

    Article  CAS  PubMed  Google Scholar 

  24. Sanz C, Vazquez P, Blazquez C, Barrio PA, Alvarez Mdel M, Blazquez E (2010) Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am J Physiol Endocrinol Metab 298(3):E634–E643

    Article  CAS  PubMed  Google Scholar 

  25. Sanz C, Roncero I, Vazquez P, Navas MA, Blazquez E (2007) Effects of glucose and insulin on glucokinase activity in rat hypothalamus. J Endocrinol 193(2):259–267

    Article  CAS  PubMed  Google Scholar 

  26. Paxinos G, Watson C (2004) The brain in stereotaxic coordinates. Elseviere, New York

  27. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Google Scholar 

  28. Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y, Klumperman J, Thorens B, Thomas G (2000) Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 408(6815):994–997

    Article  CAS  PubMed  Google Scholar 

  29. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431(7005):200–205

    Article  CAS  PubMed  Google Scholar 

  30. Solomon A, De Fanti BA, Martinez JA (2006) Peripheral ghrelin participates in the glucostatic signaling mediated by the ventromedial and lateral hypothalamus neurons. Peptides 27(7):1607–1615

    Article  CAS  PubMed  Google Scholar 

  31. Lee K, Li B, Xi X, Suh Y, Martin RJ (2005) Role of neuronal energy status in the regulation of adenosine 5′-monophosphate-activated protein kinase, orexigenic neuropeptides expression, and feeding behavior. Endocrinology 146(1):3–10

    Article  CAS  PubMed  Google Scholar 

  32. Sanz C, Vazquez P, Navas MA, Alvarez E, Blazquez E (2008) Leptin but not neuropeptide Y up-regulated glucagon-like peptide 1 receptor expression in GT1-7 cells and rat hypothalamic slices. Metabolism 57(1):40–48

    Article  CAS  PubMed  Google Scholar 

  33. McCrimmon RJ, Fan X, Cheng H, McNay E, Chan O, Shaw M, Ding Y, Zhu W, Sherwin RS (2006) Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes 55(6):1755–1760

    Article  CAS  PubMed  Google Scholar 

  34. Seo S, Ju S, Chung H, Lee D, Park S (2008) Acute effects of glucagon-like peptide-1 on hypothalamic neuropeptide and AMP activated kinase expression in fasted rats. Endocr J 55(5):867–874

    Article  CAS  PubMed  Google Scholar 

  35. Viollet B, Athea Y, Mounier R, Guigas B, Zarrinpashneh E, Horman S, Lantier L, Hebrard S, Devin-Leclerc J, Beauloye C, Foretz M, Andreelli F, Ventura-Clapier R, Bertrand L (2009) AMPK: lessons from transgenic and knockout animals. Front Biosci 14:19–44

    Article  CAS  Google Scholar 

  36. Sakamoto K, McCarthy A, Smith D, Green KA, Grahame Hardie D, Ashworth A, Alessi DR (2005) Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24(10):1810–1820

    Article  CAS  PubMed  Google Scholar 

  37. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310(5754):1642–1646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D (2007) Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 403(1):139–148

    Article  CAS  PubMed  Google Scholar 

  39. Lopez M, Vidal-Puig A (2008) Brain lipogenesis and regulation of energy metabolism. Curr Opin Clin Nutr Metab Care 11(4):483–490

    Article  CAS  PubMed  Google Scholar 

  40. Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, Friedman JM, Tschop MH, Shanabrough M, Cline G, Shulman GI, Coppola A, Gao XB, Horvath TL, Diano S (2008) UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 454(7206):846–851

    Article  CAS  PubMed  Google Scholar 

  41. Kodiha M, Rassi JG, Brown CM, Stochaj U (2007) Localization of AMP kinase is regulated by stress, cell density, and signaling through the MEKERK1/2 pathway. Am J Physiol Cell Physiol 293(5):C1427–C1436

    Article  CAS  PubMed  Google Scholar 

  42. Chopra I, Li HF, Wang H, Webster KA (2012) Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia 55(3):783–794

    Article  CAS  PubMed  Google Scholar 

  43. Khamzina L, Veilleux A, Bergeron S, Marette A (2005) Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146(3):1473–1481

    Article  CAS  PubMed  Google Scholar 

  44. Al-Khouri AM, Ma Y, Togo SH, Williams S, Mustelin T (2005) Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3beta. J Biol Chem 280(42):35195–35202

    Article  CAS  PubMed  Google Scholar 

  45. Blanco-Aparicio C, Renner O, Leal JF, Carnero A (2007) PTEN, more than the AKT pathway. Carcinogenesis 28(7):1379–1386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from MICINN (SAF2006-0475 and SAF2009-11297), Ayudas del Programa de Creación y Consolidación de Grupos de Investigación UCM-Banco Santander (GR58/08, GR35/10A, GR35/10B and GR42/10), Fundación de Investigación Médica Mutua Madrileña and IODURE project, CIBER de Diabetes y Enfermedades Metabólicas Asociadas, an initiative of ISCIII (Ministerio de Ciencia e Innovación).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Alvarez.

Additional information

Elvira Alvarez and Carmen Sanz contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 35 kb)

ESM 2

(DOC 48 kb)

ESM 3

(JPEG 470 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurtado-Carneiro, V., Roncero, I., Blazquez, E. et al. PAS Kinase as a Nutrient Sensor in Neuroblastoma and Hypothalamic Cells Required for the Normal Expression and Activity of Other Cellular Nutrient and Energy Sensors. Mol Neurobiol 48, 904–920 (2013). https://doi.org/10.1007/s12035-013-8476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8476-9

Keywords

Navigation