Skip to main content

Advertisement

Log in

Imine-linked receptors decorated ZnO-based dye-sensitized solar cells

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study reports the synthesis, characterization and photophysical properties of imine-linked receptors decorated ZnO nanoparticles using wet precipitation method. Initially, polymer dye 3 was synthesized using condensation reaction between 2-furancarboxaldehyde 1 and polyethylenimine 2. The decoration of imine-linked receptors on ZnO nanoparticles (sample A) was characterized and investigated by X-ray diffraction, scanning electron microscope and dynamic light scattering spectroscopic studies. Further, polymer dye 3 was added to ruthenium chloride (RuCl3) to form a polymer–ruthenium-based composite dye-capped ZnO nanoparticles (sample B). The optical properties of sample A were evaluated by fluorescence and UV–Vis spectroscopy. The samples A and B were further processed to dye-sensitized solar cells using wet precipitation method. The results of observations revealed that the addition of ruthenium–polymer dye molecules increased the light harvesting capacity of ZnO-based DSSCs. A maximum solar power to electricity conversion efficiency (η) of 3.83% was recorded for sample B-based DSSCs with ruthenium–metal complex dye as a good photosensitizer. The recorded photovoltaic efficiency of sample B-based DSSCs was enhanced by 1.36% compared to sample A-based DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kumar S and Scholes G D 2008 Microchimica Acta 160 315

    Article  Google Scholar 

  2. Tributsch H 2009 J. Solid State Electrochem. 13 1127

    Article  Google Scholar 

  3. Premaratne K, Kumara G R A, Rajapakse R M G and Karunaratne M L 2012 J. Photochem. Photobio. A Chem. 229 29

    Article  Google Scholar 

  4. Liu R 2014 Materials 7 2747

    Article  Google Scholar 

  5. Lim S J, Kang Y S and Kim D W 2010 Electrochem. Comm. 12 1037

    Article  Google Scholar 

  6. Upadhyaya H M, Senthilarsu S, Hsu M H and Kumar D K 2013 Sol. Energy Mater. Sol. Cells 119 291

    Article  Google Scholar 

  7. Wang Y 2009 Sol. Energy Mater. Sol. Cells 93 1167

    Article  Google Scholar 

  8. Sharma H, Kaur N, Pandiyan T and Singh N 2012 Sens. Actuat. B: Chem. 166 467

    Article  Google Scholar 

  9. Singh S, Raj T, Singh A, Bhardwaj V K and Kaur N 2014 J. Nanoelectron. Optoelectron. 9 479

    Article  Google Scholar 

  10. Argazzi R, Iha N Y M, Zabri H, Odobel F and Bignozzi C A 2004 Coord. Chem. Rev. 248 1299

    Article  Google Scholar 

  11. Rudolph M, Yoshida T, Miura H and Schlettwein D 2015 J. Phys. Chem. C 119 1298

    Article  Google Scholar 

  12. Ganesh T, Nguyen H M, Mane R S, Kim N, Shinde D V, Bhande S S, Naushad M, Hui K N and Han S H 2014 Dalton Trans. 43 11305

    Article  Google Scholar 

  13. Giribabu L and Kanaparthi R K 2013 Curr. Sci. 104 847

    Google Scholar 

  14. Warnan J, Guerin V M, Anne F B, Pellegrin Y, Blart E, Jacquemin D, Pauporté T and Odobel F 2013 J. Phys. Chem. C 117 8652

    Article  Google Scholar 

  15. Chang D W, Lee H J, Kim J H, Park S Y, Park S M, Dai L and Baek J B 2011 Organic Lett. 13 3880

    Article  Google Scholar 

  16. Noh Y and Song O 2014 Electron. Matter. Lett. 10 263

    Article  Google Scholar 

  17. Heo N, Jun Y and Park J H 2013 Sci. Rep. 3 1712

    Article  Google Scholar 

  18. Yoon J H, Kim D M, Yoon S S, Won M S and Shim Y B 2011 J. Pow. Sources 196 8874

    Article  Google Scholar 

  19. Raoufi D 2013 Renew. Energy 50 932

    Article  Google Scholar 

  20. Radzimska A K and Jesionowski T 2014 Materials 7 2833

    Article  Google Scholar 

  21. Patterson A L 1939 Phys. Rev. 56 978

    Article  Google Scholar 

  22. Chen H Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y and Li G 2009 Nat. Photonics 3 649

    Article  Google Scholar 

  23. Kim Y H, Lee I K, Song Y S, Lee M H, Kim B Y, Cho N I and Lee D Y 2014 Electron. Mater. Lett. 10 445

    Article  Google Scholar 

  24. Jun L S, Gyu H M and Ho Y D 2013 J. Nanosci. Nanotechnol. 13 7664

    Article  Google Scholar 

  25. Eun N J, Jin K S, Jeong J H, Bok Y K, Hwan K D and Kyu K J 2014 J. Nanosci. Nanotechnol. 14 9242

    Article  Google Scholar 

  26. Sung E T, Hwan K K, Wung B C and Wook C H 2014 J. Nanosci. Nanotechnol. 14 7705

    Article  Google Scholar 

  27. Jeonghun L, Hunbae I, Sukwon K, Jiwoong C and Chulhee K 2013 J. Nanosci. Nanotechnol. 13 6735

    Article  Google Scholar 

  28. Kyoseung S, Joon S S and Hwan K D 2013 J. Nanosci. Nanotechnol. 13 7123

    Article  Google Scholar 

  29. Jun J Y, Dao Z M, Hu C J, Gen Z H and Jie Z J 2013 J. Nanosci. Nanotechnol. 13 3948

    Article  Google Scholar 

  30. LiGui L, GuangHao L, XiaoNiu Y and Enle Z 2007 Chinese Sci. Bull. 52 145

    Article  Google Scholar 

  31. Beek W J E, Martijn Wienk M and Janssen R A J 2004 Adv. Mater. 16 1009

    Article  Google Scholar 

  32. Govindaraj R, Senthil Pandian M, Ramasamy P and Mukhopadhyay S 2015 Bull. Mater. Sci. 38 291

    Article  Google Scholar 

  33. Manzoor U, Islam M, Tabassam L and Rahman S U 2009 Physica E 41 1669

    Article  Google Scholar 

  34. Zeng L Y, Dai S Y, Xu W W and Wang K J 2006 Plasma Sci. Tech. 8 172

    Article  Google Scholar 

  35. Keis K, Lindgren J, Lindquist S E and Hagfeldt A 2000 Langmuir 16 4688

    Article  Google Scholar 

  36. Kim K S, Kang Y S, Lee J H, Shin Y J, Park N G, Ryu K S and Chang S H 2006 Bull. Korean Chem. Soc. 27 295

    Article  Google Scholar 

  37. Sakai N, Miyasaka T and Takurou Murakami N 2013 J. Phys. Chem. C 117 10949

    Article  Google Scholar 

Download references

Acknowledgements

This research work has been supported by the infrastructure of Indian Institute of Technology, Ropar and Punjab University, Chandigarh. We are also very grateful to I.K. Gujral Punjab Technical University, Jalandhar (Kapurthala), for providing the necessary research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SATBIR SINGH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SINGH, S., SINGH, A. & KAUR, N. Imine-linked receptors decorated ZnO-based dye-sensitized solar cells. Bull Mater Sci 39, 1371–1379 (2016). https://doi.org/10.1007/s12034-016-1283-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1283-y

Keywords

Navigation