Skip to main content
Log in

Homologous Recombinatorial Cloning Without the Creation of Single-Stranded Ends: Exonuclease and Ligation-Independent Cloning (ELIC)

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

We describe a new type of molecular cloning that complements the available strategies for homologous recombinatorial cloning. Purified, linear double-stranded DNA molecules with homologous ends are simply mixed in water and they transform readily into E. coli. Insert and linear vector need as few as ten base pairs of homologous sequence at their ends and essentially no incubation or enzyme treatments are needed for creating recombinants from linear fragments. Our method outcompetes most existing cloning methods in simplicity and affordability and is well-suited for high-throughput applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Festa, F., Steel, J., Bian, X., & Labaer, J. (2013). High-throughput cloning and expression library creation for functional proteomics. Proteomics, 13, 1381–1399.

    Article  CAS  Google Scholar 

  2. Li, M. Z., & Elledge, S. J. (2007). Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nature Methods, 4, 251–256.

    Article  CAS  Google Scholar 

  3. Engler, C., Kandzia, R., & Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLoS One, 3, e3647.

    Article  Google Scholar 

  4. Tillett, D., & Neilan, B. A. (1999). Enzyme-free cloning: A rapid method to clone PCR products independent of vector restriction enzyme sites. Nucleic Acids Research, 27, e26.

    Article  CAS  Google Scholar 

  5. Aslanidis, C., & de Jong, P. J. (1990). Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Research, 18, 6069–6074.

    Article  CAS  Google Scholar 

  6. Klock, H. E., Koesema, E. J., Knuth, M. W., & Lesley, S. A. (2008). Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins, 71, 982–994.

    Article  CAS  Google Scholar 

  7. Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hamilton, C. A, I. I. I., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6, 343–347.

    Article  CAS  Google Scholar 

  8. De Jong, R. N., Daniëls, M. A., Kaptein, R., & Folkers, G. E. (2006). Enzyme free cloning for high throughput gene cloning and expression. Journal of Structural and Functional Genomics, 7, 109–118.

    Article  CAS  Google Scholar 

  9. Jeong, J.-Y., Yim, H.-S., Ryu, J.-Y., Lee, H. S., Lee, J.-H., Seen, D.-S., et al. (2012). One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Applied and Environmental Microbiology, 78, 5440–5443.

    Article  CAS  Google Scholar 

  10. Gibson, D. G. (2011). Enzymatic assembly of overlapping DNA fragments. Methods in Enzymology, 498, 349–361.

    Article  CAS  Google Scholar 

  11. Stevenson, J., Krycer, J. R., Phan, L., & Brown, A. J. (2013). A practical comparison of ligation-independent cloning techniques. PLoS One, 8, e83888.

    Article  Google Scholar 

  12. Green, M. R., & Sambrook, J. (2012). Molecular cloning: A laboratory manual (4th ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  13. Yanisch-Perron, C., Vieira, J., & Messing, J. (1985). Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 33, 103–119.

    Article  CAS  Google Scholar 

  14. Strauch, M. A., Spiegelman, G. B., Perego, M., Johnson, W. C., Burbulys, D., & Hoch, J. A. (1989). The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. The EMBO Journal, 8, 1615–1621.

    CAS  Google Scholar 

  15. Mumberg, D., Müller, R., & Funk, M. (1995). Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene, 156, 119–122.

    Article  CAS  Google Scholar 

  16. Engler, C., Gruetzner, R., Kandzia, R., & Marillonnet, S. (2009). Golden Gate shuffling: A one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One, 4, e5553.

    Article  Google Scholar 

  17. Gaillard, C., & Strauss, F. (1994). Association of poly(CA)·poly(TG) DNA fragments into four-stranded complexes bound by HMG1 and 2. Science, 264, 433–436.

    Article  CAS  Google Scholar 

  18. Neschastnova, A. A., Markina, V. K., Popenko, V. I., Danilova, O. A., Sidorov, R. A., Belitsky, G. A., et al. (2002). Mechanism of spontaneous DNA–DNA interaction of homologous linear duplexes. Biochemistry, 41, 7795–7801.

    Article  CAS  Google Scholar 

  19. Li, C., Wen, A., Shen, B., Lu, J., Huang, Y., & Chang, Y. (2011). FastCloning: A highly simplified, purification-free, sequence- and ligation-independent PCR cloning method. BMC Biotechnology, 11, 92.

    Article  CAS  Google Scholar 

  20. Aslanidis, C., de Jong, P. J., & Schmitz, G. (1994). Minimal length requirement of the single-stranded tails for ligation-independent cloning (LIC) of PCR products. Genome Research, 4, 172–177.

    Article  CAS  Google Scholar 

  21. Marsischky, G., & LaBaer, J. (2004). Many paths to many clones: A comparative look at high-throughput cloning methods. Genome Research, 14, 2020–2028.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Prof. Lloyd Ruddock and Prof. Linda M. Hendershot are kindly acknowledged for providing DNA constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. Frey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koskela, E.V., Frey, A.D. Homologous Recombinatorial Cloning Without the Creation of Single-Stranded Ends: Exonuclease and Ligation-Independent Cloning (ELIC). Mol Biotechnol 57, 233–240 (2015). https://doi.org/10.1007/s12033-014-9817-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9817-2

Keywords

Navigation