Skip to main content

Advertisement

Log in

Comparative Protein Composition of the Brains of PACAP-Deficient Mice Using Mass Spectrometry-Based Proteomic Analysis

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a widespread neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. The diverse biological actions provide the background for the variety of deficits observed in mice lacking endogenous PACAP. PACAP-deficient mice display several abnormalities, such as sudden infant death syndrome (SIDS)-like phenotype, decreased cell protection, and increased risk of Parkinson’s disease. However, the molecular and proteomic background is still unclear. Therefore, our aim was to investigate the differences in peptide and protein composition in the brains of PACAP-deficient and wild-type mice using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometric (MS)-based proteomic analysis. Brains from PACAP-deficient mice were removed, and different brain areas (cortex, hippocampus, diencephalon, mesencephalon, brainstem, and cerebellum) were separated. Brain pieces were weighed, homogenized, and further processed for electrophoretic analysis. Our results revealed several differences in diencephalon and mesencephalon. The protein bands of interest were cut from the gel, samples were digested with trypsin, and the tryptic peptides were measured by matrix-assisted laser desorption ionization time of flight (MALDI TOF) MS. Results were analyzed by MASCOT Search Engine. Among the altered proteins, several are involved in metabolic processes, energy homeostasis, and structural integrity. ATP-synthase and tubulin beta-2A were expressed more strongly in PACAP-knockout mice. In contrast, the expression of more peptides/proteins markedly decreased in knockout mice, like pyruvate kinase, fructose biphosphate aldolase-A, glutathione S-transferase, peptidyl propyl cis-trans isomerase-A, gamma enolase, and aspartate amino transferase. The altered expression of these enzymes might partially account for the decreased antioxidant and detoxifying capacity of PACAP-deficient mice accompanying the increased vulnerability of these animals. Our results provide novel insight into the altered biochemical processes in mice lacking endogenous PACAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armstrong BD, Abad C, Chhith S et al (2008) Impaired nerve regeneration and enhanced neuroinflammatory response in mice lacking pituitary adenylyl cyclase activating peptide. Neuroscience 151:63–73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atlasz T, Babai N, Kiss P et al (2007) Pituitary adenylate cyclase activating polypeptide is protective in bilateral carotid occlusion-induced retinal lesion in rats. Gen Comp Endocrinol 153:108–114

    Article  CAS  PubMed  Google Scholar 

  • Atlasz T, Szabadfi K, Kiss P et al (2008) PACAP-mediated neuroprotection of neurochemically identified cell types in MSG-Induced retinal degeneration. J Mol Neurosci 36:97–104

    Article  CAS  PubMed  Google Scholar 

  • Brown D, Tamas A, Reglödi D, Tizabi Y (2013) PACAP protects against salsolinol-induced toxicity in dopaminergic SH-SY5Y cells: implication for Parkinson’s disease. J Mol Neurosci 50:600–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Endo K, Nakamachi T, Seki T et al (2011) Neuroprotective effect of PACAP against NMDA-induced retinal damage in the mouse. J Mol Neurosci 43:22–29

    Article  CAS  PubMed  Google Scholar 

  • Fabian E, Reglodi D, Mester L et al (2012) Effects of PACAP on intracellular signaling pathways in human retinal pigment epithelial cells exposed to oxidative stress. J Mol Neurosci 48:493–500

    Article  CAS  PubMed  Google Scholar 

  • Ferencz A, Kiss P, Weber G et al (2010a) Comparison of intestinal warm ischemic injury in PACAP knockout and wild-type mice. J Mol Neurosci 42:435–442

    Article  CAS  PubMed  Google Scholar 

  • Ferencz A, Weber G, Helyes Z, Hashimoto H, Baba A, Reglodi D (2010b) Presence of endogenous PACAP-38 ameliorated intestinal cold preservation tissue injury. J Mol Neurosci 42:428–434

    Article  CAS  PubMed  Google Scholar 

  • Girard BA, Lelievre V, Braas KM et al (2006) Noncompensation in peptide/receptor gene expression and distinct behavioral phenotypes in VIP- and PACAP-deficient mice. J Neurochem 99:499–513

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H, Shintani N, Tanaka K et al (2001) Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci U S A 98:13355–13360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hashimoto H, Hashimoto R, Shintani N et al (2009) Depression-like behavior in the forced swimming test in PACAP-deficient mice: amelioration by the atypical antipsychotic risperidone. J Neurochem 110:595–602

    Article  CAS  PubMed  Google Scholar 

  • Hori M, Nakamachi T, Rakwal R et al (2012) Transcriptomics and proteomics analyses of the PACAP38 influenced ischemic brain in permanent middle cerebral artery occlusion model mice. J Neuroinflammation 9:256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath G, Mark L, Brubel R et al (2010) Mice deficient in pituitary adenylate cyclase activating polypeptide display increased sensitivity to renal oxidative stress in vitro. Neurosci Lett 469:70–74

    Article  CAS  PubMed  Google Scholar 

  • Lebon A, Seyer D, Cosette P et al (2006) Identification of proteins regulated by PACAP in PC12 cells by 2D gel electrophoresis coupled to mass spectrometry. Ann NY Acad Sci 1070:380–387

    Article  CAS  PubMed  Google Scholar 

  • Miyata A, Arimura A, Dahl RR et al (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulated adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Nakamachi T, Ohtaki H et al (2005) Monoaminergic neuronal development is not affected in PACAP-gene-deficient mice. Regul Pept 126:103–108

    Article  CAS  PubMed  Google Scholar 

  • Ohtaki H, Nakamachi T, Dohi K et al (2006) Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proc Natl Acad Sci U S A 103:7488–7493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohtaki H, Nakamachi T, Dohi K, Shioda S (2008) Role of PACAP in ischemic neural death. J Mol Neurosci 36:16–25

    Article  CAS  PubMed  Google Scholar 

  • Ohtaki H, Satoh A, Nakamachi T et al (2010) Regulation of oxidative stress by pituitary adenylate cyclase-activating polypeptide (PACAP) mediated by PACAP receptor. J Mol Neurosci 42:397–403

    Article  CAS  PubMed  Google Scholar 

  • Reglodi D, Tamás A, Somogyvári-Vigh A et al (2002) Effects of pretreatment with PACAP on the infarct size and functional outcome in rat permanent focal cerebral ischemia. Peptides 23:2227–2234

    Article  CAS  PubMed  Google Scholar 

  • Reglodi D, Kiss P, Szabadfi K et al (2012) PACAP is an endogenous protective factor-insights from PACAP-deficient mice. J Mol Neurosci 48:482–492

    Article  CAS  PubMed  Google Scholar 

  • Szabadfi K, Atlasz T, Kiss P et al (2012) Mice deficient in pituitary adenylate cyclase activating polypeptide (PACAP) are more susceptible to retinal ischemic injury in vivo. Neurotox Res 21:41–48

    Article  CAS  PubMed  Google Scholar 

  • Tan YV, Abad C, Lopez R et al (2009) Targeted gene deletion reveals that pituitary adenylyl cyclase activating polypeptide is an intrinsic regulator of Treg abundance in mice and plays a protective role in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 106:2012–2017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuchikawa D, Nakamachi T, Tsuchida M et al (2012) Neuroprotective effect of endogenous pituitary adenylate cyclase-activating polypeptide on spinal cord injury. J Mol Neurosci 48:508–517

    Article  CAS  PubMed  Google Scholar 

  • Vaudry D, Hamelink C, Damadzic R, Eskay RL, Gonzalez B, Eiden LE (2005) Endogenous PACAP acts as a stress response peptide to protect cerebellar neurons from ethanol or oxidative insult. Peptides 26:2518–2524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaudry D, Falluel-Morel A, Bourgault S et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357

    Article  CAS  PubMed  Google Scholar 

  • Wada Y, Nakamachi T, Endo K et al (2013) PACAP attenuates NMDA-induced retinal damage in association with modulation of the microglia/macrophage status into an acquired deactivation subtype. J Mol Neurosci 51:493–502

    Article  CAS  PubMed  Google Scholar 

  • Wang SL, Liu CY, Liu FM, Ren LP (2012) IL-USA-DLLME method to simultaneously extract and determine four phenylurea herbicides in water samples. Curr Anal Chem 8:357–364

    Article  Google Scholar 

  • Watson MB, Nobuta H et al (2013) PACAP deficiency sensitizes nigrostriatal dopaminergic neurons to paraquat-induced damage and modulates central and peripheral inflammatory activation in mice. Neuroscience 240:277–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zaman K, Ryu H, Hall D et al (1999) Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J Mol Neurosci 19:9821–9830

    CAS  Google Scholar 

  • Zhang YF, Lee HK (2012) Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction followed high-performance liquid chromatography for the determination of ultraviolet filters in environmental water samples. Anal Chim Acta 750:120–126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 ‘National Excellence Programs’ [A2-ACSJD-13-0302 (NKPR-2013-31609), A2-SZGYA-FOK-13-0003], OTKAK104984, PD109099, GVOP-3.2.1-2004-04-0172/3.0, TIOP 1.3.1-10/1-2010-0008, TIOP 1.3.1-07/1, TÁMOP-4.2.2.A-11/1/KONV-2012-0053, TÁMOP-4.2.2.A-11/1/KONV-2012-0024, NAP, PTE-MTA Lendület Program, and Arimura Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Reglodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maasz, G., Pirger, Z., Reglodi, D. et al. Comparative Protein Composition of the Brains of PACAP-Deficient Mice Using Mass Spectrometry-Based Proteomic Analysis. J Mol Neurosci 54, 310–319 (2014). https://doi.org/10.1007/s12031-014-0264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0264-0

Keywords

Navigation