Skip to main content

Advertisement

Log in

JNK: A Stress-Activated Protein Kinase Therapeutic Strategies and Involvement in Alzheimer’s and Various Neurodegenerative Abnormalities

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The c-Jun N-terminal kinase (JNKs), also known as stress-activated protein kinase (SAPK), is one such family of multifunctional-signaling molecules, activated in response to wide range of cellular stresses as well as in response to inflammatory mediators. JNKs regulate various processes such as brain development, repair, and memory formation; but on the other hand, JNKs are potent effectors of neuroinflammation and neuronal death. A large body of evidence indicates that JNK activity is critical for normal immune and inflammatory response. Indeed, aberrant activation of JNK has been implicated in the pathogenesis of Alzheimer’s disease. Moreover, the JNK pathway is considered to be a key regulator of various inflammatory pathways which are activated during normal aging and Alzheimer’s disease therapy as well as key regulator of pro-inflammatory cytokines biosynthesis at the transcriptional and translational levels, which makes different components of these pathway potential targets for the treatment of autoimmune and inflammatory diseases. Pharmacological inhibition of JNK has been demonstrated to attenuate microglial activation and the release of neurotoxic chemicals including pro-inflammatory cytokines. In this review, we provide an overview on implications and therapeutic strategies of JNK in neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alarcon-Vargas D, Ronai Z (2004) C-Jun-NH2 kinase (JNK) contributes to the regulation of c-My protein stability. J Biol Chem 279:5008–5016

    Article  CAS  PubMed  Google Scholar 

  • Barry CE, Nolan Y, Clarke RM, Lynch A, Lynch MA (2005) Activation of c-Jun-terminal kinase is critical in mediating lipopolysachharide-induced changes in the rat hippocampus. J Neurochem 93:221–231

    Article  CAS  PubMed  Google Scholar 

  • Becker EB, Bonni A (2006) Pinl mrdiates neural-specific activation of the mitochondrial apoptotic machinery. Neuron 49:655–662

    Article  CAS  PubMed  Google Scholar 

  • Behrens A, Sibilia M, Wagner EF (1999) Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 21:326–329

    Article  CAS  PubMed  Google Scholar 

  • Bendotti C, Tortarolo M, Borsello T (2006) Targeting stress activated protein kinases, JNK and p38, as new therapeutic apporoach for neurodegenerative diseases. Cent Nerv Syst Agents Med Chem 6:1–9

    Google Scholar 

  • Ben-Zvi A, Yagil Z, Hagalili Y, Klein H, Lerman O, Behre O (2006) Semaphorin 3A and neurotrophins: a balance between apoptosis and survival signalling in embryonic DRG neurons. J Neurochem 96:585–597

    Article  CAS  PubMed  Google Scholar 

  • Bevilaqua LR, Kerr DS, Medina JH, Izquierdo I, Cammarota M (2003) Inhibition of hippocampal jun N-terminal kinase enhances short-term memory but blocks long-term memory formation and retrieval of an inhibitory avoidance task. Eur J Neurosci 17:897–902

    Article  PubMed  Google Scholar 

  • Bjorkblom B, Ostman N, Hongisto V, Komarovski V, Filen JJ, Nyman TA, Kallunki T, Courtney MJ, Coffey ET (2005) Constitutively active cytoplasmic c-Jun-N-terminal kinase 1 is a dominant regulator of dendritic architecture: role of microtubule-associated protein 2 as an effector. J Neurosci 25:6350–6361

    Article  PubMed  CAS  Google Scholar 

  • Blass JP, Gibson GE, Sheu RK (2000) Inherent abnormalities in energy metabolism in Alzheimer disease. Interaction with cerebrovascular compromise. Ann NY Acad Sci 903:204–221

    Article  CAS  PubMed  Google Scholar 

  • Bogoyevitch MA, Kobe B (2006) Uses for JNK: the many and varied substrates of the c-Jun-N-terminal kinases. Microbiol Mol Biol Rev 70:1061–1095

    Article  CAS  PubMed  Google Scholar 

  • Brecht S, Kirchhof R, Chromik A, Willesen M, Nicolaus T, Raivich G, Wessig J, Waetzig V, Goetz M, Claussen M, Pearse D, Kuan CY, Vaudano E, Behrens A, Wagner E, Flavell RA, Davis RJ, Herdegen T (2005) Specific pathophysiological functions of JNK isoforms in the brain. Eur J Neurosci 21:363–377

    Article  PubMed  Google Scholar 

  • Brust TB, Cayabyab FS, Mac Vicar BA (2007) C-Jun-N-terminal kinase regulates A1 receptor-mediated synaptic depression in the rat hippocampus. Neuropharmacol 53:906–917

    Article  CAS  Google Scholar 

  • Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phospho-rylation and role in neurodegenerative disorders. Brain Res Rev 33:95–130

    Article  CAS  PubMed  Google Scholar 

  • Carboni S, Hiver A, Szyndralewiez C, Gaillard P, Gotteland JP, Vitte PA (2004) AS601245 (1, 3-benzothiazol-2-yl (2-[[2-(3-pyridinyl) ethyl] amino[4 pyrimidinyl) acetonitrile): a c-Jun NH2-terminal protein kinase inhibitor with neuroprotective properties. J Pharmacol Exp Ther 310:25–32

    Article  CAS  PubMed  Google Scholar 

  • Carboni S, Boschert U, Gaillard P, Gotteland JP, Gillon JY, Vitte PA (2008) AS601245, a c-Jun NH2-terminal kinase (JNK) inhibitor, reduces axon/dendrite damage and cognitive deficits after global cerebral ischaemia in gerbils. Br J Pharmacol 153:157–163

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Jones Y, Ellisman MH, Goldstein LS, Karin M (2003) JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev Cell 4:521–533

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Cobb MH (2006) Activation of MEKK1 by Rho GTPases. Method in Enzymology 406:468–478

    Article  CAS  Google Scholar 

  • Chong ZZ, Li F, Maiese K (2005) Stress in the brain: novel cellular mechanisms of injury linked to Alzheimer’s disease. Brain Res Rev 49:1–21

    Article  CAS  PubMed  Google Scholar 

  • Ciani L, Salinas PC (2007) c-Jun N-terminal kinase (JNK) cooperates with Gsk3-beta to regulate disheveled-mediated microtubule stability. BMC Cell Biol 8:27

    Article  PubMed  CAS  Google Scholar 

  • Coffey ET, Hongisto V, Dickens M, Davis RJ, Courtney MJ (2000) Dual roles for c-Jun-N-terminal kinase in developmental and stress responses in cerebellar granule neurons. J Neurosci 20:7602–7613

    CAS  PubMed  Google Scholar 

  • Coffey ET, Smiciene G, Hongisto V, Cao J, Brecht S, Herdegen T, Courtney MJ (2002) C-Jun-N-terminal protein kinase (JNK2/3) is specifically activated by stress, mediating c-Jun activation, in the presence of constitutive JNK1 activity in cerebral neurons. J Neurosci 22:4335–4345

    CAS  PubMed  Google Scholar 

  • Cole GM, Frautschy SA (2007) The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s disease. Exp Gerontol 42:10–21

    Article  CAS  PubMed  Google Scholar 

  • Cole-Edwards KK, Musto AE, Bazan NG (2006) c-Jun N-terminal kinase activation responses induced by hippocampal kindling are mediated by reactive astrocytes. J Neurosci 26:8295–8304

    Article  CAS  PubMed  Google Scholar 

  • Colombo A, Repici M, Pesaresi M, Santambrogio S, Forloni G, Borsello T (2007) The TAT-JNK inhibitor peptide interferes with beta amyloid protein stability. Cell Death Differ 14:1845–1848

    Article  CAS  PubMed  Google Scholar 

  • Costello DA, Herron CE (2004) The role of c-Jun N-terminal kinase in the A beta-mediated impair-ment of LTP and regulation of synaptic transmission in the hippocampus. Neuropharmacology 46:655–662

    Article  CAS  PubMed  Google Scholar 

  • Curran BP, Murray HJ, O’Connor JJ (2003) A role for c-Jun N-terminal kinase in the inhibition of long-term potentiation by interleukin-1beta and long-term depression in the rat dentate gyrus in vitro. Neuroscience 118:347–357

    Article  CAS  PubMed  Google Scholar 

  • Dajas-Bailador F, Jones EV, Whitmarsh AJ (2008) The JIP1 scaffold protein regulates axonal develop-ment in cortical neurons. Curr Biol 18:221–226

    Article  CAS  PubMed  Google Scholar 

  • Daniels RH, Hall PS, Bokoch GM (1998) Membrane targeting of p21-activated kinase1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J 17:754–764

    Article  CAS  PubMed  Google Scholar 

  • Davis RJ (1999) Signal transduction by the C-jun-N-terminal kinase. Biochem Soc Symp 64:1–12

    CAS  PubMed  Google Scholar 

  • Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  CAS  PubMed  Google Scholar 

  • Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ (1994) JNK1: a protein kinase stimulated by uv light and Ha-Ras that binds and phosphorylates the c-jun activation domain. Cell 76:1025–1037

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh R, Sharma V, Mehan S, Sharma N, Bedi KL (2009) Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine—a PDE1 inhibitor. Eur J Pharmacol 620:49–56

    Article  CAS  PubMed  Google Scholar 

  • Dias-Santagata D, Fulga TA, Duttaroy A, Feany MB (2007) Oxidative stress mediates tau-induced neurodegeneration in Drosophila. J Clin Invest 117:236–245

    Article  CAS  PubMed  Google Scholar 

  • Dickens M, Rogers JS, Cavanagh J, Raitano A, Xia Z, Halpern JR, Greenberg ME, Sawyers CL, Davis RJ (1997) A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 277:693–696

    Article  CAS  PubMed  Google Scholar 

  • Donovan N, Becker EB, Konishi Y, Bonni A (2002) JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem 277:40944–40949

    Article  CAS  PubMed  Google Scholar 

  • Eminel S, Roemer L, Waetzig V, Herdegen T (2008) C-Jun-N-terminal kinases trigger both degeneration and neurite outgrowth in primary hippocampal and cortical neurons. J Neurochem 104:957–969

    Article  CAS  PubMed  Google Scholar 

  • Esneault E, Castagne V, Moser P, Bonny C, Bernaudin M (2008) D-JNKi, a peptide inhibitor of c-Jun N-terminal kinase, promotes functional recovery after transient focal cerebral ischemia in rats. Neuroscience 152:308–320

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo C, Pais TF, Gomes JR, Chatterjee S (2008) Neuron-microglia crosstalk up-regulates neuronal FGF-2 expression which mediates neuroprotection against excitotoxicity via JNK1/2. J Neurochem 107:73–85

    Article  CAS  PubMed  Google Scholar 

  • Force T, Kuida K, Namchuk M, Parang K, Kyriakis JM (2004) Inhibitors of protein kinase signaling pathways. Circulation 109:1196–1205

    Article  CAS  PubMed  Google Scholar 

  • Gallagher ED, Gutowski S, Sternweis PC, Cobb MH (2004) RhoA binds to the amino terminus of MEKK1 and regulates its kinase activity. J Biol Chem 279:1872–1877

    Article  CAS  PubMed  Google Scholar 

  • Gallo KA, Johnson GL (2002) Mixed-lineage kinase control of JNK and p38 MAPK pathway. Cell Molecular Nature Reviews 3:663–672

    Article  CAS  Google Scholar 

  • Gao Y, Signore AP, Yin W, Cao G, Yin XM, Sun F, Luo Y, Graham SH, Chen J (2005) Neuroprotection against focal ischemia brain injury by inhibition of C-Jun-N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway. J Metab 25:694–712

    CAS  Google Scholar 

  • Gdalyahu A, Ghosh I, Levy T, Sapir T, Sapoznik S, Fishler Y, Azoulai D, Reiner O (2004) DCX, a new mediator of the JNK pathway. EMBO J 23:823–832

    Article  CAS  PubMed  Google Scholar 

  • Gibson GE, Blass JP (1976) Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycaemia. J Neurochem 27:37–42

    Article  CAS  PubMed  Google Scholar 

  • Gibson GE, Sheu KF, Blass JP (1998) Abnormalities of mitochondrial enzymes in Alzheimer Disease. J Neural Transm 105:855–870

    Article  CAS  PubMed  Google Scholar 

  • Grunblatt E, Petrisic MS, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101:757–770

    Article  PubMed  CAS  Google Scholar 

  • Guan QH, Pie DS, Zhang QG, Hao ZB, Xu TL, Zhang GY (2005) The neuroprotective action of SP600125, a new inhibitor of JNK, on transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal CA1 via nuclear and non-neuclear pathways. Brain Res 1035:51–59

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Whtimarsh AJ (2008) The beta-arrestin-2 scaffold protein promotes c-jun-N-terminal kinase-3 activation by binding to its nonconserved N terminus. J Biol Chem 283:15903–15911

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B, Davis RJ (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15:2760–2770

    CAS  PubMed  Google Scholar 

  • Ha HY, Cho IH, Lee KW, Song JY, Kim KS, Yu YM, Lee JK (2005) The axon guidance defect of the telencephalic commissures of the JSAP1-deficient brain was partially rescued by the transgenic expression of JIP1. Dev Biol 277:184–199

    Article  CAS  PubMed  Google Scholar 

  • Haeusgen W, Boehm R, Zhao Y, Herdegen T, Waetzig V (2009) Specific activities of individual C-Jun N-terminal kinase in the brain. Neurosci 161:951–959

    Article  CAS  Google Scholar 

  • Harding TC, Xue L, Bienemann A, Haywood D, Dickens M, Tolkovsky AM, Uney JB (2001) Inhibition of JNK by overexpression of the JNL binding domain of JIP-1 prevents apoptosis in sympathetic neurons. J Biol Chem 276:4531–4534

    Article  CAS  PubMed  Google Scholar 

  • Harris CA, Johnson EM Jr (2001) BH3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J Biol Chem 276:377754–377760

    Google Scholar 

  • Hashimoto Y, Tsuji O, Niikura T, Yamagishi Y, Ishizaka M, Kawasumi M, Chiba T, Kanekura K, Yamada M, Tsukamoto E, Kouyama K, Terashita K, Aiso S, Lin A, Nishimoto I (2003) Involvement of c-Jun N-Terminal kinase in amyloid precursor protein-meiated neuronal cell death. J Neurochem 84:864–877

    Article  CAS  PubMed  Google Scholar 

  • Heo YS, Kim SK, Seo CI, Kim YK, Sung BJ, Lee JI, Park SY, Kim JH, Hwang KY, Hyun YL, Jeon YH, Ro S, Cho JM, Lee TG, Yang CH (2004) Structural basis for the selective inhibition of JNK1 by the scaffolding protein JIP1 and SP600125. EMBO J 23:2185–2195

    Article  CAS  PubMed  Google Scholar 

  • Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox and CREB/ATF proteins. Brain Res Brain Res Rev 28:370–390

    Article  CAS  PubMed  Google Scholar 

  • Herdegen T, Waetzig V (2001) The JNK and p38 signal transduction following axotomy, restor. Neurol Neurosci 19:29–39

    CAS  Google Scholar 

  • Hidding U, Mielke K, Waetzig V, Brecht S, Hanisch U, Behrens A, Wagner E, Herdegen T (2002) The c-Jun N-terminal kinases in cerebral microglia: immunological functions in the brain. Biochem Pharmacol 64:781–788

    Article  CAS  PubMed  Google Scholar 

  • Hirari S, Cuide F, Miyata T, Ogawa M, Kiyonari H, Suda Y, Aizawa S, Banba Y, Ohno S (2006) The c-Jun N-terminal kinase activator dual leucine zipper kinase regulates axon growth and neuronal migration in the developing cerebral cortex. J Neurosci 26:11992–12002

    Article  CAS  Google Scholar 

  • Hui L, Pei DS, Zhang QG, Guan QH, Zhang GY (2005) The neuroprotection of insulin on ischemic brain injury in rat hippocampus through negative regulation of JNK signaling pathway by PI3K/AKT activation. Brain Res 1052:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 101:665–670

    Article  CAS  PubMed  Google Scholar 

  • Jang S, Kelley KW, Johnson RW (2008) Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci USA 105:7534–7539

    Article  CAS  PubMed  Google Scholar 

  • Jellinger KA (2006) Alzheimer 100-highlights in the history of Alzheimer research. J Neural Transm 113:1603–1623

    Article  CAS  PubMed  Google Scholar 

  • Johnson GL, Nakamura K (2007) The c-Jun kinase/stress activated pathway: regulation, function and role in human disease. Biochem Biophys Acta 1773:1341–1348

    Article  CAS  PubMed  Google Scholar 

  • Kallunki T, Su B, Tsigelny I, Sluss H, Derijard B, Moore G, Dasvis R, Karin M (1994) JNK 2 contains a specificity-determined region responsible for efficient c-Jun binding and phosphorylation. Genes Dev 8:2996–3007

    Article  CAS  PubMed  Google Scholar 

  • Kaneto H, Matsuoka TA, Nakatani Y, Kawamori D, Matsuhisa M, Yamasaki Y (2005) Oxidative stress and the JNK pathway in diabetes. Curr Diab Rev 1:65–72

    Article  CAS  Google Scholar 

  • Katsuno M, Morishima-Kawashima M, Saito Y, Yamanouchi H, Ishiura S, Murayama S, Ihara Y (2005) Independent accumulations of tau and amyloid beta-protein in the human entorhinal cortex. Neurolo 64:687–692

    CAS  Google Scholar 

  • Kawauchi T, Chihama K, Nabeshima Y, Hoshino M (2003) The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration. EMBO J 22:4190–5001

    Article  CAS  PubMed  Google Scholar 

  • Kidd PM (2005) Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors and prospects for brain rebuilding using integrative management. Altern Med Rev 10:268–293

    PubMed  Google Scholar 

  • Kita Y, Kimura KD, Kobayashi M, Ihara S, Kaibuchi K, Kuroda S, Ui M, Iba H, Konishi H, Kikkawa U, Nagata S, Fukui Y (1998) Microinjection of activated phosphatidylinositol-3 kinase induces process outgrowth in rat PC12 cells through the Rac-JNK signal transduction pathway. J Cell Sci 11:907–1115

    Google Scholar 

  • Kuan CY, Yang DD, Samanta-Roy DR, Davis RJ, Rakic P, Flavell RA (1999) The JNK1 and JNK2 protein kinas are required for regional specific apoptosis during early brain development. Neuron 22:667–676

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J (1996) Protein kinase cascades activated by stress and inflammatiory cytokines. Bioessays 18:567–577

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch MF, Woodgett JR (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–160

    Article  CAS  PubMed  Google Scholar 

  • Lagalwar S, Angela L, Bongaarts G, Berry WR, Binder LI (2006) Formation of phospho-SAPK/JNK granules in the hippocampus is an early event in Alzheimer’s disease. J Neuropathol Exp Neurol 65:455–464

    Article  PubMed  Google Scholar 

  • Lee DY, Oh YJ, Jin BK (2005) Thrombin-activated microglia contribute to death of dopaminergic neurons in rat mesencephalic cultures: dual roles of mitogen-activated protein kinase signaling pathways. Glia 51:98–110

    Article  PubMed  Google Scholar 

  • Levkovitz Y, Ben-Shushan G, Hershkovitz A, Isaac R, Gil-Ad I, Shvartman D, Ronen D, Weizman A, Zick Y (2007) Antidepressant induces cellular insulin resistance by activation of IRS-1 kinases. Mol Cell Neurosci 37:305–312

    Article  CAS  Google Scholar 

  • Li XM, Li CC, Yu SS, Chen JT, Sabapathy K, Ruan DY (2007) JNK1 contributes to metabotropic glutamate receptor-dependent long-term depression and short-term synaptic plasticity in the mice area hippocampal CA1. Eur J Pharmacol 25:391–396

    Google Scholar 

  • Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS (2004) Tumour necrosis factor-a, interleukin-1b, and interferone-g stimulate g-secretase mediated cleavage of Amyloid Precursor Protein through a JNK-dependent MAPK pathway. J Biol Chem 279:49523–49532

    Article  CAS  PubMed  Google Scholar 

  • Lindwall C, Kanje M (2005) The Janus role of c-Jun: cell death versus survival and regeneration of neonatal sympathetic and sensory neurons. Exp Neurol 196:184–194

    Article  CAS  PubMed  Google Scholar 

  • Lindwall C, Dahlin L, Lundborg G, Kanje M (2004) Inhibition of c-Jun phosphorylation reduces axonal outgrowth of adult rat nodose ganglia and dorsal root ganglia sensory neurons. Mol Cell Neurosci 27:267–279

    CAS  PubMed  Google Scholar 

  • Liu F, Liang Z, Gong CX (2006) Hyperphosphorylation of tau and protein phosphatase in Alzheimer’s disease. Panminerva Med 48:97–108

    CAS  PubMed  Google Scholar 

  • Lotharius J, Falsig J, van Beek J, Payne S, Dringen R, Brundin P, Leist M (2005) Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J Neurosci 25:6329–6342

    Article  CAS  PubMed  Google Scholar 

  • Maiese K, Chong ZZ (2004) Insight into oxidative stress and potential novel therapeutic target for Alzhiemer’s disease. Restor Neurol Neurosci 22:87–104

    CAS  PubMed  Google Scholar 

  • Manning AM, Davis RJ (2003) Targeting JNK for therapeutic benefit: from junk to gold. Nature Reviews 2:554–565

    Article  CAS  PubMed  Google Scholar 

  • Mason RP, Leeds PR, Jacob RF, Hough CJ, Zhang KG, Mason PE, Chuang DM (1999) Inhibition of excessive neuronal apoptosis by the calcium antagonist amlodipine and antioxidants in cerebellar granule cells. J Neurochem 72:1448–1456

    Article  CAS  PubMed  Google Scholar 

  • Mei Y, Yuan Z, Song B, Li D, Ma C, Hu C, Ching YP, Li M (2008) Activating transcription factor 3 up-regulated by c-Jun NH(2)-terminal kinase/c-Jun contributes to apoptosis induced by potassium deprivation in cerebellar granule neurons. Neuroscience 151:771–779

    Article  CAS  PubMed  Google Scholar 

  • Mehan S, Miishra D, Sankhla R, Singh M (2010) Mitogen activated protein kinase at the crossroads of Alzheimer’s diseases. Inter J Pharma Prof Res 1:52–60

    Google Scholar 

  • Moreira PI, Honda K, Liu Q, Alviev G, Oliveira CR, Santos MS, Zhu X, Smith A, Perry G (2005) Alzheimer’s disease and oxidative stress: the old problem remains unsolved. Curr MedChem–Cent Nerv Sys Agents 5:51–62

    CAS  Google Scholar 

  • Moreira PI, Duarte AI, Santos MS, Rego AC, Oliveria CR (2009) An integrative review of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J Alz Dis 16:741–761

    Google Scholar 

  • Musti AM, Taylor M, Bohmann D (1997) Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 275:400–402

    Article  CAS  PubMed  Google Scholar 

  • Newbern J, Taylor A, Robinson M, Lively MO, Miligan CE (2007) c-Jun N-terminal kinase signaling regulates events associated with both health and degeneration in motoneurons. Neurosci 147:680–692

    Article  CAS  Google Scholar 

  • Oh HL, Seok JY, Kwon CH, Kang SK, Kim YK (2006) Role of MAPK in ceramide-induced cell death in primary cultured astrocytes from mouse embryonic brain. Neurotoxicol 27:31–38

    Article  CAS  Google Scholar 

  • Oliva AA, Atkins CM, Copenagle L, Banker GA (2006) Activated c-Jun N-terminal kinase is required for axon formation. J Neurosci 26:9462–9470

    Article  CAS  PubMed  Google Scholar 

  • Parihar MS, Brewer GJ (2007) Mitoenergetic failure in Alzheimer disease. Am J Physiol Cell Physiol 292:8–23

    Article  CAS  Google Scholar 

  • Patel MS, Korotchkina LG (2006) Regulation of pyruvate dehydrogenase complex. Biochem Soc Trans 34:217–222

    Article  CAS  PubMed  Google Scholar 

  • Planel E, Tatebayashi Y, Miyasaka T, Liu L, Wang L, Herman M, Yu WH, Luchsinger JA, Wadzinski B, Duff KE, Takashima A (2007) Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J Neurosci 27:13635–13648

    Article  CAS  PubMed  Google Scholar 

  • Pocivavsek A, Burns MP, Rebeck GW (2009) Low-density lipoprotein receptors regulate microglial inflammation through c-Jun N-terminal kinase. Glia 57:444–453

    Article  PubMed  Google Scholar 

  • Precept (2007) Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson disease. Neurology 69:1480–1490

    Article  CAS  Google Scholar 

  • Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR (1991) Phosphorylation of C-jun mediated by MAP kinases. Nature 353:670–674

    Article  CAS  PubMed  Google Scholar 

  • Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B, Alix S, Youle RJ, LaMarche A, Maroney AC, Johnson EM Jr (2003) JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38:899–914

    Article  CAS  PubMed  Google Scholar 

  • Raivich G, Behrens A (2006) Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Prog Neurobiol 78:347–363

    Article  CAS  PubMed  Google Scholar 

  • Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW (1999) Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 30:77–105

    Article  CAS  PubMed  Google Scholar 

  • Raivich G, Bohatschek M, Da Costa C, Iwata O, Galiano M, Hristova M, Nateri AS, Makwana M, Riera-Sans L, Wolfer DP, Lipp HP, Aguzzi A, Wagner EF, Behrens A (2004) The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron 43:57–67

    Article  CAS  PubMed  Google Scholar 

  • Repici M, Mare L, Colombo A, Ploia C, Sclip C, Bonny C, Nicod P, Salmona M, Borsello T (2009) C-Jun-N-terminal kinase-bibding domain-dependent phosphorylation of mitogen-actvated protein kinase kinase 7 and balancing cross-talk between C-Jun N-terminal kinase and extracellular signal-regulated kinase pathways in cortical neurons. Neurosci 159:94–103

    Article  CAS  Google Scholar 

  • Riese U, Ziegler E, Hamburger M (2004) Militarinone A induces differentiation in PC12 cells via MAP and AKT Kinase signal transduction pathways. FEBS Lett 577:455–459

    Article  CAS  PubMed  Google Scholar 

  • Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC (2005) Wnt signaling through disheveled, Rac and JNK regulates dendritic development. Nat Neurosci 8:34–42

    Article  CAS  PubMed  Google Scholar 

  • Sabapathy K, Joohum W, Hochedlinger K, Chang L, Karin M, Wagner EF (1999) Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech of Devel 89:115–124

    Article  CAS  Google Scholar 

  • Sato S, Ito M, Ito T, Yoshioka K (2004) Scaffold protein JSAP1 is transported to growth cones of neuritis independent of JNK signaling pathways in PC12h cells. Genes 329:51–60

    CAS  Google Scholar 

  • Sato T, Torashima T, Sugihara K, Hirai H, Asano M, Yoshioka K (2008) The scaffold protein JSAP1 regulates proliferation and differentiation of cerebellar granule cell precursors by modulating JNK signaling. Mol Cell Neurosci 39:569–578

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Gupta YK (2002) Chronic treatment with resveratrol prevents intracerebro-ventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci 71:2489–2498

    Article  CAS  PubMed  Google Scholar 

  • Shaw D, Wang SM, Villasenor AG, Tsing S, Walter D, Browner MF, Barnett J, Kuglstatter A (2008) The crystal structure of JNK2 reveals conformational flexibility in the MAP kinase insert and indicates its involvement in the regulation of catalytic activity. J Mol Biol 383:885–893

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Chen Y, Liu H, Zhang K, Zhang T, Lin A, Jing N (2008) Hydrogen peroxide promotes Abeta production through JNK-dependent activation of gamma-secretase. J Biol Chem 283:17721–17730

    Article  CAS  PubMed  Google Scholar 

  • Shoham S, Bejar C, Kovalev E, Weinstock M (2003) Intracerebroventricular injection of streptozotocin causes neurotoxicity to myelin that contributes to spatial memory deficits in rats. Exp Neurol 184:1043–1052

    Article  CAS  PubMed  Google Scholar 

  • Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M (1991) Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serine 63 and 73. Nature 354:494–496

    Article  CAS  PubMed  Google Scholar 

  • Smeal T, Binetruy B, Mercola D, Grover-Bardwick A, Heidecker G, Rapp UR, Karin M (1992) Oncoprotein mediated signaling cascade stimulates c-Jun activity by phosphorylation of serine 63 and 73. Mol And Cell Biol 12:3507–3513

    CAS  Google Scholar 

  • Smith MA, Nunomura A, Zhu X, Takeda A, Perry G (2002) Metabolic, metallic and mitotic sources of oxidative stress in Alzheimer disease. Antioxid Redox Signal 2:413–420

    Article  Google Scholar 

  • Soane L, Kahraman S, Kristian T, Fiskum G (2007) Mechanism of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. J Neurosci Res 85:3407–3415

    Article  CAS  PubMed  Google Scholar 

  • Sonkusare S, Srinivasan K, Kaul C, Ramarao P (2005) Effect of Donepezil and lercanidipine on memory impairment induced by intracerebroventricular streptozotocin in rats. Life Sci 77:1–14

    Article  CAS  PubMed  Google Scholar 

  • Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13:72–78

    Article  CAS  PubMed  Google Scholar 

  • Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in lzheimer’s disease-is this type 3 diabetes? J Alz Dis 7:63–80

    CAS  Google Scholar 

  • Suckfuell M, Canis M, Strieth S, Scherer H, Haisch A (2007) Intratympanic treatment of acute acoustic trauma with a cell-permeable JNK ligand: a prospective randomized phase I/II study. Acta Otolaryngol 127:938–942

    Article  CAS  PubMed  Google Scholar 

  • Sugino T, Nozaki K, Takagi Y, Hattori I, Hashimoto N, Moriguchi T, Nishida E (2000) Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. J Neurosci 20:4506–4514

    CAS  PubMed  Google Scholar 

  • Suto R, Tominaga K, Mizuguchi H, Sasaki E, Higuchi K, Kim S, Iwao H, Arakawa T (2004) Dominant-negative mutant of c-jun gene transfer: a novel therapeutic strategy for colorectal cancer. Gene Ther 11:187–193

    Article  CAS  PubMed  Google Scholar 

  • Takatori A, Geth E, Chen L, Zhang L, Meller J, Xia Y (2008) Differential transmission of MEKK1 morphogenetic signals by JNK1 and JNK2. Development 135:23–32

    Article  CAS  PubMed  Google Scholar 

  • Tang SC, Lathia JD, Selvaraj PK, Jo DG, Mughal MR, Cheng A, Siler DA, Markesbery WR, Arumugam TV, Mattson MP (2008) Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid betapeptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol 213:114–121

    Article  CAS  PubMed  Google Scholar 

  • Tararuk T, Ostman N, Li W, Bjorkblom B, Padzik A, Zdrojewska J, Hongisto V, Herdegen T, Konopka W, Courtney MJ, Coffey ET (2006) JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J Cell Biol 173:265–277

    Article  CAS  PubMed  Google Scholar 

  • Thomas GM, Lin DT, Nuriya M, Huganir RL (2008) Rapid and bidirectional regulation of AMPA receptor phosphorylation and trafficking by JNK. EMBO J 27:361–372

    Article  CAS  PubMed  Google Scholar 

  • Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Sience 288:870–874

    CAS  Google Scholar 

  • Tretter L, Adam-Vizi V (2000) Inhibition of Krebs cycle by hydrogen peroxide: a key role of a-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci 20:8972–8979

    CAS  PubMed  Google Scholar 

  • Varona-Santos JL, Pileggi A, Molano RD, Sanabria NY, Ijaz A, Atsushi M, Ichii H, Pastori RL, Inverardi L, Ricordi C, Fornoni A (2008) C-J-un-N-terminal kinase 1 is deleterious to the function and survival of murine islets. Diabetologia 51:2271–2280

    Article  CAS  PubMed  Google Scholar 

  • Waetzig V, Herdegen T (2003) The concerted signaling of ERK1/2 and JNKs is essential for PC12 cell neuritogenesis and converges at the level of target proteins. Mol Cell Neurosci 24:238–249

    Article  CAS  PubMed  Google Scholar 

  • Waetzig V, Zhao Y, Herdegen T (2006) The bright side of JNKs: multitalented mediators in neuronal sprouting, brain development and nerve fiber regeneration. Prog Neurobiol 80:84–97

    Article  CAS  PubMed  Google Scholar 

  • Waetzig V, Herdegen T (2004) Neurodegenerative and physiological actions of c-Jun N-terminal kinases in the mammalian brain. Neurosci Letters 361:64–67

    Article  CAS  Google Scholar 

  • Waetzig V, Czeloth K, Hidding U, Mielke K, Kanzow M, Brecht S, Goetz M, Lucius R, Herdegen T, Hanisch UK (2005) C-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 50:235–346

    Article  PubMed  Google Scholar 

  • Wang MJ, Jeng KCG, Kuo JS, Chen HL, Huang HY, Chen WF, Lin SZ (2004) C-Jun-N-terminal kinase and, to lesser extent, p38 mitogen-activated protein kinase regulate inducible nitric oxide synthase expression in hyaluronan fragments-stimulated BV-2 microglia. J Neuroimmunol 146:50–62

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Nadarajah B, Robinson AC, McColl BW, Jin JW, Dajas-Bailador F, Boot-Handford RP, Tournier C (2007a) Targeted deletion of the mitogen-activated protein kinase kinase 4 gene in the nervous system causes severe brain developmental defects and premature death. Mol Cell Biol 27:7935–7946

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Destrument A, Tournier C (2007b) Physiological roles of MKK4 and MKK7: insight from animal models. Biochem Biophys Acta 1773:1349–1357

    Article  CAS  PubMed  Google Scholar 

  • Weston CR, Davis RJ (2007) The JNK signal transduction pathway. Curr Opin Cell Biol 19:142–149

    Article  CAS  PubMed  Google Scholar 

  • Whitmarsh AJ (2006) The JIP family of MAPK scaffold proteins. Biochem Sco Trans 34:828–832

    Article  CAS  Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    CAS  PubMed  Google Scholar 

  • Wu J, Zhang X, Nauta HJ, Lin Q, Li J, Fang L (2008) JNK1 regulates histone acetylation in trigeminal neurons following chemical stimulation. Biochem Biophys Res Commun 376:781–786

    Article  CAS  PubMed  Google Scholar 

  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAPK kinase on apoptosis. Science 24:1326–1331

    Article  Google Scholar 

  • Xie X, Gu Y, Fox T, Coll JT, Fleming MA, Markland W, Caron PR, Wilson KP, Su MS (1998) Crystal structure of JNK3: a kinase implicated in neuronal apoptosis. Structure 6:983–991

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi J, Miyamoto Y, Murabe M, Fujiwara Y, Sanbe A, Fujita Y, Murase S, Tanoue A (2007) Gadd45a, the gene induced by the mood stabilizer valproic acid, regulates neurite outgrowth through JNK and the substrate paxillin in N1E-115 neuroblastoma cells. Exp Cell Res 313:1886–1896

    Article  CAS  PubMed  Google Scholar 

  • Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, Rakic P, Flavell RA (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389:865–70

    Google Scholar 

  • Yang JY, Moulin N, Van Bemmelen MX, Dubuis G, Tawadros T, Haefliger JA, Waeber G, Widmann C (2007a) Splice variant-specific stabilization of JNKs by IB1/JIP1. Cell Signal 19:2201–2207

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhu X, Chen Y, Wang X, Chen R (2007b) p38 and JNK MAPK, but not ERK1/2 MAPK, play important role in colchicines-induced cortical neurons apoptosis. Eur J Pharmacol 576:26–33

    Article  CAS  PubMed  Google Scholar 

  • Yao M, Nguyen TV, Pike CJ (2005) Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci 25:1149–1158

    Article  CAS  PubMed  Google Scholar 

  • Yatsushige H, Yamaguchi-Okada M, Zhou C, Calvert JW, Cahill J, Colohan ART, Zhang JH (2008) Inhibition of C-Jun-N-terminal kinase pathway attenuates cerebral vasospasm after experimental subarachnoid hemorrhage through the suppression of apoptosis. Acta Neurochir Suppl 104:27–31

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Hastie CJ, Mclauchlan H, Cohen P, Goedert M (2004) Phosphorylation of micro- tubule associated protein tau by isoforms of c-Jun-N-teminal kinase (JNK). J Neurochem 90:352–358

    Article  CAS  PubMed  Google Scholar 

  • Zhang QX, Pei DS, Guan QH, Sun YF, Liu XM, Zhang GY (2007) Crosstalk between PSD-95 and JIP1-mediated signaling modules: the mechanism of MLK3 activation in cerebral ischemia. Biochemistry 46:4006–4016

    Article  CAS  PubMed  Google Scholar 

  • Zhao WQ, Townsend M (2009) Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer’s disease. Biochim Biophys Acta 1792:482–496

    CAS  PubMed  Google Scholar 

  • Zhou Q, Lam PY, Han D, Cadenas E (2008) C-Jun-N-terminal kinase regulates mitochondrial bioenergetics by modulating pyruvate dehydrogenase activity in primary cortical neurons. J Neurochem 104:325–335

    CAS  PubMed  Google Scholar 

  • Zhou Q, Lam PY, Han D, Cadenas E (2009) Activation of c-Jun-N-terminal kinase and decline of mitochondrial pyruvate dehydrogenase activity during brain aging. FEBS Lett 583:1132–1140

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Castellani RJ, Takeda A, Nunomura A, Atwood CS, Perry G, Smith MA (2001a) Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the two hit hypothesis. Mech Ageing Dev 123:39–46

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Raina AK, Rottkamp CA, Aliev G, Perry G, Boux H, Smith MA (2001b) Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J Neurochem 76:435–441

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Pak D, Qin Y, McCormack SG, Kim MJ, Baumgart JP, Velamoor V, Auberson YP, Osten P, van Aelst L, Sheng M, Zhu JJ (2005) Rap2-JNK removes synaptic AMPA receptors during depotentiation. Neuron 46:905–16

    Google Scholar 

Download references

Acknowledgement

Authors are thankful to Mr. S.N.Kachhwaha, the Chairman, G.D.Memorial College of Pharmacy, Jodhpur (Rajasthan) and Mr. Manish Kachhwaha, Director, G.D.Memorial College of Pharmacy, Jodhpur (Rajasthan) for invaluable support and encouragement. Authors also express their thankfulness to his late guide Prof. Manjeet Singh, Director Academics, ISF College of Pharmacy, Moga (Punjab) for always being with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidharth Mehan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehan, S., Meena, H., Sharma, D. et al. JNK: A Stress-Activated Protein Kinase Therapeutic Strategies and Involvement in Alzheimer’s and Various Neurodegenerative Abnormalities. J Mol Neurosci 43, 376–390 (2011). https://doi.org/10.1007/s12031-010-9454-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9454-6

Keywords

Navigation