Journal of Molecular Neuroscience

, Volume 40, Issue 1, pp 211-216

Mechanisms of Neuroprotective Effects of Nicotine and Acetylcholinesterase Inhibitors: Role of α4 and α7 Receptors in Neuroprotection

  • Akinori AkaikeAffiliated withDepartment of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University Email author 
  • , Yuki Takada-TakatoriAffiliated withDepartment of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College
  • , Toshiaki KumeAffiliated withDepartment of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
  • , Yasuhiko IzumiAffiliated withDepartment of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Neurotoxicity induced by glutamate and other excitatory amino acids has been implicated in various neurodegenerative disorders including hypoxic ischemic events, trauma, and Alzheimer’s and Parkinson’s diseases. We examined the roles of nicotinic acetylcholine receptors (nAChRs) in survival of CNS neurons during excitotoxic events. Nicotine as well as other nicotinic receptor agonists protected cortical neurons against glutamate neurotoxicity via α4 and α7 nAChRs at least partly by inhibiting the process of apoptosis in near-pure neuronal cultures obtained from the cerebral cortex of fetal rats. Donepezil, galanatamine and tacrine, therapeutic acetylcholinesterase (AChE) inhibitors currently being used for treatment of Alzheimer’s disease also protected neuronal cells from glutamate neurotoxicity. Protective effects of nicotine and the AChE inhibitors were antagonized by nAChR antagonists. Moreover, nicotine and those AChE inhibitors induced up-regulation of nAChRs. Inhibitors for a non-receptor-type tyrosine kinase, Fyn, and janus-activated kinase 2, suppressed the neuroprotective effect of donepezil and galantamine. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor also suppressed the neuroprotective effect of the AChE inhibitors. The phosphorylation of Akt, an effector of PI3K, and the expression level of Bcl-2, an anti-apoptotic protein, increased with donepezil and galantamine treatments. These results suggest that nicotine as well as AChE inhibitors, donepezil and galantamine, prevent glutamate neurotoxicity through α4 and α7 nAChRs and the PI3K-Akt pathway.


Nicotinic receptor Acetylcholinesterase Neuroprotection Glutamate neurotoxicity Up-regulation