Skip to main content

Advertisement

Log in

CREB and the discovery of cognitive enhancers

  • Preclinical Development
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In the past few years, a series of molecular-genetic, biochemical, cellular and behavioral studies in fruit flies, sea slugs and mice have confirmed a long-standing notion that long-term memory formation depends on the synthesis of new proteins. Experiments focused on the cAMP-responsive transcription factor, CREB, have established that neural activity-induced regulation of gene transcription promotes a synaptic growth process that strengthens the connections among active neurons. This process constitutes a physical basis for the engram—and CREB is a “molecular switch” to produce the engram. Helicon Therapeutics has been formed to identify drug compounds that enhance memory formation via augmentation of CREB biochemistry. Candidate compounds have been identified from a high throughput cell-based screen and are being evaluated in animal models of memory formation. A gene discovery program also seeks to identify new genes, which function down-stream of CREB during memory formation, as a source for new drug discoveries in the future. Together, these drug and gene discovery efforts promise new class of pharmaceutical therapies for the treatment of various forms of cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn S., Ginty D., and Linden D. (1999) A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron 23, 559–568.

    Article  PubMed  CAS  Google Scholar 

  • Alberini C. M., Ghirardi M., Metz R., and Kandel E. R. (1994) C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell 76, 1099–1114.

    Article  PubMed  CAS  Google Scholar 

  • Barth A. L., McKenna M., Glazewski S., Hill P., Impey S., Storm D., and Fox K. (2000) Upregulation of cAMP response element-mediated gene expression during experience-dependent plasticity in adult neocortex. J. Neurosci. 20, 4206–4216.

    PubMed  CAS  Google Scholar 

  • Belvin M. P., Zhou H., and Yin J. C. (1999) The Drosophila dCREB2 gene affects the circadian clock. Neuron 22, 777–787.

    Article  PubMed  CAS  Google Scholar 

  • Bourtchuladze R., Frenguelli B., Blendy J., Cioffi D., Schutz G., and Silva A. (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68.

    Article  PubMed  CAS  Google Scholar 

  • Connolly J. B., Roberts I. J., Armstrong J. D., Kaiser K. M. F., Tully T., and O’Kane C. J. (1996) Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274, 2104–2107.

    Article  PubMed  CAS  Google Scholar 

  • Dubnau J., Grady L., Kitamoto T., and Tully T. (2001) Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411, 476–480.

    Article  PubMed  CAS  Google Scholar 

  • Glazewski S., Barth A., Wallace H., McKenna M., Silva A., and Fox K. (1999) Impaired experience-dependent plasticity in barrel cortex of mice lacking the alpha and delta isoforms of CREB. Cerebr. Cortex 9, 249–256.

    Article  CAS  Google Scholar 

  • Guzowski J. and McGaugh J. (1997) Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl. Acad. Sci. USA 94, 2693–2698.

    Article  PubMed  CAS  Google Scholar 

  • Impey S., Mark M., Villacres E., Poser S., Chavkin C., and Storm D. (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16, 973–982.

    Article  PubMed  CAS  Google Scholar 

  • Josselyn S. A., Shi C., Carlezon W. A., Neve R. L., Nestler E. J., and Davis M. (2001) Long term memory is facilitated by cAMP response element-binding protein over-expression in the amygdala. J. Neurosci. 21, 2404–2412.

    PubMed  CAS  Google Scholar 

  • Kogan J. H., Frankland P. W., Blendy J. A., Coblentz J., Marowitz Z., Schutz G., and Silva A. J. (1997) Spaced training induces normal long-term memory in CREB mutant mice. Curr. Biol. 7, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Lamprecht R., Hazvi S., and Dudai Y. (1997) cAMP response element-binding protein in the amygdala is required for long-but not short-term conditioned taste aversion memory. The Journal of Neuroscience 17, 8443–8450.

    PubMed  CAS  Google Scholar 

  • Montell D. J., Rorth P., and Spradling A. C. (1992) slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell 71, 51–62.

    Article  PubMed  CAS  Google Scholar 

  • Pham T., Impey S., Storm D., and Stryker M. (1999) CRE-mediated gene transcription in neocortical neuronal plasticity during the developmental critical period. Neuron 22, 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Pham T. A., Rubenstein J. L., Silva A. J., Storm D. R., and Stryker M. P. (2001) The CRE/CREB pathway is transiently expressed in thalamic circuit development and contributes to refinement of retinogeniculate axons. Neuron 31, 409–420.

    Article  PubMed  CAS  Google Scholar 

  • Saitoe M. and Tully T. (2000) Making connections between synaptic and behavioral plasticity in Drosophila, in Toward a Theory of Neuroplasticity (McEachern J. and Shaw C., eds.), Psychology Press, New York, pp 193–220.

    Google Scholar 

  • Sterneck E., Paylor R., Jackson-Lewis V., Libbey M., Przedborski S., Tessarollo L., et al. (1998) Selectively enhanced contextual fear conditioning in mice lacking the transcriptional regulator CCAAT/enhancer binding protein delta. Proc. Natl. Acad. Sci. USA 95, 10908–10913.

    Article  PubMed  CAS  Google Scholar 

  • Taubenfeld S. M., Wiig K. A., Bear M. F., and Alberini C. M. (1999) A molecular correlate of memory and amnesia in the hippocampus. Nat. Neurosci. 2, 309–310.

    Article  PubMed  CAS  Google Scholar 

  • Taubenfeld S. M., Wiig K. A., Monti B., Dolan B., Pollonini G., and Alberini C. M. (2001) Fornix-dependent induction of hippocampal CCAAT enhancer-binding protein [beta] and [delta] Co-localizes with phosphorylated cAMP response element-binding protein and accompanies long-term memory consolidation. J. Neurosci. 21, 84–91.

    PubMed  CAS  Google Scholar 

  • Tully T. (1997) Regulation of gene expression and its role in long-term memory and synaptic plasticity. Proc. Natl. Acad. Sci. USA 94, 4239–4241.

    Article  PubMed  CAS  Google Scholar 

  • Tully T., Preat T., Boynton S., and Del Vecchio M. (1994) Genetic dissection of consolidated memory in Drosophila. Cell 79, 35–47.

    Article  PubMed  CAS  Google Scholar 

  • Yin J., Del Vecchio M., Zhou H., and Tully T. (1995) CREB as a memory modulator: Induced expression of dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107–115.

    Article  PubMed  CAS  Google Scholar 

  • Yin J., Wallach J., Del Vecchio M., Wilder E., Zhou H., Quinn W., and Tully T. (1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Tully.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, R., Bourtchuladze, R., Gossweiler, S. et al. CREB and the discovery of cognitive enhancers. J Mol Neurosci 19, 171–177 (2002). https://doi.org/10.1007/s12031-002-0029-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-002-0029-z

Index Entries

Navigation