Skip to main content

Advertisement

Log in

Risk of Hyponatremia in Patients with Aneurysmal Subarachnoid Hemorrhage Treated with Exogenous Vasopressin Infusion

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Vasopressin is one of the vasopressors used to augment blood pressure in subarachnoid hemorrhage (SAH) patients with clinically significant vasospasm. The purpose of the present study was to determine whether the administration of vasopressin to a population of SAH patients was an independent predictor of developing hyponatremia.

Methods

A retrospective review on the health records of 106 patients admitted to the University of Alberta Hospital Neurosciences ICU, Edmonton AB, Canada, with SAH from June 2013 to December 2015 was conducted. Serum sodium changes in patients receiving vasoactive drugs were compared. In addition, independent predictors for hyponatremia (Na < 135 mmol/L) were determined using a multivariate logistic regression model.

Results

Patients treated with vasopressin in addition to other vasoactive drugs had significantly higher sodium changes compared to those treated with other vasoactive drugs (−4.7 ± 6 vs −0.1 ± 2.4 mmol/L, respectively, p value 0.001). Hyponatremia occurred in 14 patients (70 %) treated with vasopressin, 10 patients (44 %) treated with vasoactive drugs other than vasopressin (p value 0.081), and 24 patients (38 %) who did not receive any vasoactive drug (p value 0.013). In multivariate logistic regression analysis, when adjusting for disease severity, age, sex, aneurysm location, and treatment, vasopressin was associated with hyponatremia (OR 3.58, 95 % CI, 1.02–12.5, p value 0.046).

Conclusions

The results of the present study suggest that hyponatremia may be more common in SAH patients treated with exogenous vasopressin compared to those who did not receive it. Serum sodium should be monitored closely when vasopressin is being used in the SAH population. Further studies are needed to confirm the effect of exogenous vasopressin on serum sodium levels in SAH populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Connolly ES Jr, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American heart association/American stroke association. Stroke. 2012;43:1711–37.

    Article  PubMed  Google Scholar 

  2. Diringer MN, Bleck TP, Claude Hemphill J 3rd, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the neurocritical care society’s multidisciplinary consensus conference. Neurocrit Care. 2011;15:211–40.

    Article  PubMed  Google Scholar 

  3. Suarez JI, Tarr RW, Selman WR. Aneurysmal subarachnoid hemorrhage. N Engl J Med. 2006;354:387–96.

    Article  CAS  PubMed  Google Scholar 

  4. Muehlschlegel S, Dunser MW, Gabrielli A, Wenzel V, Layon AJ. Arginine vasopressin as a supplementary vasopressor in refractory hypertensive, hypervolemic, hemodilutional therapy in subarachnoid hemorrhage. Neurocrit Care. 2007;6:3–10.

    Article  CAS  PubMed  Google Scholar 

  5. Rang HP, Ritter JM, Flower RJ, Henderson G. The pituitary and the adrenal cortex. In: Rang and Dale's pharmacology. 8th ed. Edinburgh; New York: Elsevier/Churchill Livingstone; 2015. p. 402–417.

  6. Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.

    Article  CAS  PubMed  Google Scholar 

  7. Salazar M, Hu BB, Vazquez J, Wintz RL, Varon J. Exogenous vasopressin-induced hyponatremia in patients with vasodilatory shock: two case reports and literature review. J Intensive Care Med. 2015;30:253–8.

    Article  PubMed  Google Scholar 

  8. Mapa B, Taylor BE, Appelboom G, Bruce EM, Claassen J, Connolly ES. Impact of hyponatremia on morbidity, mortality, and complications after aneurysmal subarachnoid hemorrhage: a systematic review. World Neurosurg. 2016;85:305–14.

    Article  PubMed  Google Scholar 

  9. Wijdicks EFM, Vermeulen M, Hijdra A, Van Gijn J. Hyponatremia and cerebral infarction in patients with ruptured intracranial aneurysms: is fluid restriction harmful? Ann Neurol. 1985;17:137–40.

    Article  CAS  PubMed  Google Scholar 

  10. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.

    Article  PubMed  Google Scholar 

  11. Obeid JS, McGraw CA, Minor BL, et al. Procurement of shared data instruments for research electronic data capture (REDCap). J Biomed Inform. 2013;46:259–65.

    Article  PubMed  Google Scholar 

  12. Obritsch MD, Jung R, Fish DN, MacLaren R. Effects of continuous vasopressin infusion in patients with septic shock. Ann Pharmacother. 2004;38:1117–22.

    Article  CAS  PubMed  Google Scholar 

  13. Grinevich V, Knepper MA, Verbalis J, Reyes I, Aguilera G. Acute endotoxemia in rats induces down-regulation of V2 vasopressin receptors and aquaporin-2 content in the kidney medulla. Kidney Int. 2004;65:54–62.

    Article  CAS  PubMed  Google Scholar 

  14. Sharshar T, Blanchard A, Paillard M, Raphael JC, Gajdos P, Annane D. Circulating vasopressin levels in septic shock. Crit Care Med. 2003;31:1752–8.

    Article  CAS  PubMed  Google Scholar 

  15. Mather HM, Ang V, Jenkins JS. Vasopressin in plasma and CSF of patients with subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 1981;44:216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu ZW, Gu H, Zhang BF, et al. Rapidly increased vasopressin promotes acute platelet aggregation and early brain injury after experimental subarachnoid hemorrhage in a rat model. Brain Res. 2016;1639:108–19.

    Article  CAS  PubMed  Google Scholar 

  17. Diringer MN, Wu KC, Verbalis JG, Hanley DF. Hypervolemic therapy prevents volume contraction but not hyponatremia following subarachnoid hemorrhage. Ann Neurol. 1992;31:543–50.

    Article  CAS  PubMed  Google Scholar 

  18. Hannon MJ, Behan LA, O’Brien MM, et al. Hyponatremia following mild/moderate subarachnoid hemorrhage is due to SIAD and glucocorticoid deficiency and not cerebral salt wasting. J Clin Endocrinol Metab. 2014;99:291–8.

    Article  CAS  PubMed  Google Scholar 

  19. Wijdicks EF, Vermeulen M, ten Haaf JA, Hijdra A, Bakker WH, van Gijn J. Volume depletion and natriuresis in patients with a ruptured intracranial aneurysm. Ann Neurol. 1985;18:211–6.

    Article  CAS  PubMed  Google Scholar 

  20. Sayama T, Inamura T, Matsushima T, Inoha S, Inoue T, Fukui M. High incidence of hyponatremia in patients with ruptured anterior communicating artery aneurysms. Neurol Res. 2000;22:151–5.

    Article  CAS  PubMed  Google Scholar 

  21. Saramma P, Menon RG, Srivastava A, Sarma PS. Hyponatremia after aneurysmal subarachnoid hemorrhage: implications and outcomes. J Neurosci Rural Pract. 2013;4:24–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Hanafy Mahmoud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marr, N., Yu, J., Kutsogiannis, D.J. et al. Risk of Hyponatremia in Patients with Aneurysmal Subarachnoid Hemorrhage Treated with Exogenous Vasopressin Infusion. Neurocrit Care 26, 182–190 (2017). https://doi.org/10.1007/s12028-016-0300-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-016-0300-8

Keywords

Navigation