, Volume 16, Issue 2, pp 213-218

Vasospasm Shortens Cerebral Arterial Time Constant

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Background

Cerebrovascular time constant (τ) estimates how fast cerebral blood arrives in cerebral arterial bed after each heart stroke. We investigate the pattern of changes in τ following subarachnoid hemorrhage (SAH), with specific emphasis on the temporal profile of changes in relation to the development of cerebral vasospasm.

Methods

Simultaneous recordings of arterial blood pressure (ABP) and transcranial Doppler (TCD) blood flow velocity (CBFV) in MCA were performed daily in patients after SAH. In 22 patients (10 males and 12 females; median age: 48 years, range: 34–84 years) recordings done before spasm were compared to those done during spasm. Vasospasm was confirmed with TCD (mean CBFV in MCA > 120 cm/s and Lindegaard ratio > 3). τ was estimated as a product of compliance of cerebral arteries (C a) and cerebrovascular resistance (CVR). C a and CVR were estimated using mathematical transformations of ABP and CBFV waveforms.

Results

Vasospasm caused shortening of τ on both the spastic (before: 0.20 ± 0.05 s vs. spasm: 0.14 ± 0.04 s, P < 0.0008) and contralateral side (before: 0.22 ± 0.05 s vs. spasm: 0.16 ± 0.04 s, P < 0.0008). Before TCD signs of vasospasm were detected, τ demonstrated asymmetry with lower values on ipsilateral side to aneurysm, in comparison to contralateral side (P < 0.009),

Conclusions

Cerebral vasospasm causes shortening of τ. Shorter τ at the side of aneurysm can be observed before formal TCD signs of vasospasm are observed, therefore, potentially reducing time to escalation of treatment.