Skip to main content

Advertisement

Log in

Preservation of high-fat diet-induced femoral trabecular bone loss through genetic target of TNF-α

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Obesity and osteoporosis are two common chronic diseases, however, the basis for the correlation between them remains largely unknown. The pro-inflammation cytokine tumor necrosis factor-alpha (TNF-α) plays important roles in lipid and bone metabolisms, which may be a good candidate in the correlation between obesity and osteoporosis. We investigated the pathological roles of TNF-α in high-fat diet (HFD)-induced bone loss. Wild-type (WT) mice and TNF-α knockout (TNF-α−/−) mice were fed with the standard diet or the HFD for 12 weeks. Bone marrow stromal cells (BMSCs) from both genotypes were induced to differentiate into osteoblasts and treated with palmitic acid (PA). Bone mass and microstructure of femurs were evaluated by micro-CT. Lipid and bone metabolisms were investigated by histological and plasma analyses, and real-time PCR. On the HFD, both TNF-α−/− and WT mice presented notable visceral obesity, dyslipidemia. Adipogenesis and osteoclastogenesis were enhanced, while osteoblastogenesis was reduced in both genotypes. However, the changes were significantly different between TNF-α−/− and WT mice after the HFD. The gain of body and fat-pad weight was less and adipocyte area was smaller by 22 % in TNF-α−/− mice. Osteoclast numbers and plasma CTX level were lower by 40 % and by 23 % in TNF-α−/− mice. There were more ALP positive cells in the PA-treated TNF-α−/− BMSCs. mRNA expression of PPAR-γ was lower while that of Runx2 was higher in the bone from TNF-α−/− HFD group and in the PA-treated TNF-α−/− BMSCs, compared to WT on the same treatment. Furthermore, femoral trabecular bone mass and trabecular bone number were significantly decreased in WT mice on the HFD, whereas they were increased by 1.56-fold and 1.53-fold, respectively, in TNF-α−/− mice on the same diet (P < 0.05). Our results demonstrated that TNF-α gene knockout retained HFD-induced femoral trabecular bone loss mainly by suppressing adipogenesis and osteoclastogenesis, and enhancing osteoblastogenesis, which suggests that TNF-α plays a critical role in the development of HFD-related bone metabolic disorders and it may be a new potential therapeutic target for obesity-related bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization, Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Tech. Rep. Ser. 894, i–xii, 1–253 (2000)

    Google Scholar 

  2. C.L. Ogden, M.D. Carroll, L.R. Curtin, M.A. McDowell, C.J. Tabak, Prevalence of overweight and obesity in the United States, 1999-2004. JAMA 295, 1549–1555 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. A.M. Wolf, G.A. Colditz, Current estimates of the economic cost of obesity in the United States. Obes. Res. 6, 97–106 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. L.J. Melton 3rd, Adverse outcomes of osteoporotic fractures in the general population. J. Bone Miner. Res. 18, 1139–1141 (2003)

    Article  PubMed  Google Scholar 

  5. D. Brixner, Assessment of the prevalence and costs of osteoporosis treatment options in a real-world setting. Am. J. Manag. Care. 12, S191–S198 (2006)

    PubMed  Google Scholar 

  6. E.A. Greco, R. Fornari, F. Rossi, Santiemma. V, Prossomariti, G.: is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index. Int. J. Clin. Pract. 64, 817–820 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. M. Russell, N. Mendes, K.K. Miller, C.J. Rosen, H. Lee, Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J. Clin. Endocrinol. Metab. 95, 1247–1255 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. J. Jelcic, Influence of obesity on fracture risk in osteoporosis. Lijec. Vjesn. 132, 298–302 (2010)

    PubMed  Google Scholar 

  9. G. Chan, C.T. Chen, Musculoskeletal effects of obesity. Curr. Opin. Pediatr. 21, 65–70 (2009)

    Article  PubMed  Google Scholar 

  10. G.V. Halade, M.M. Rahman, P.J. Williams, G. Fernandes, High fat diet-induced animal model of age-associated obesity and osteoporosis. J. Nutr. Biochem. 21, 1162–1169 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. G.V. Halade El, A. Jamali., P.J. Williams, R.J. Fajardo, G. Fernandes, Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Exp. Gerontol. 46, 43–52 (2011)

    Article  Google Scholar 

  12. P. Ducy, M. Amling, S. Takeda, M. Priemel, A.F. Schilling, Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. S.A. Shapses, D. Sukumar, S.H. Schneider, Y. Schlussel, R.E. Brolin, Hormonal and dietary influences on true fractional calcium absorption in women: role of obesity. Osteoporos. Int. 23, 2607–2614 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. N.S. Datta, Muscle-bone and fat-bone interactions in regulating bone mass: do PTH and PTHrP play any role? Endocrine 47, 389–400 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. L.J. Zhao, Y.J. Liu, P.Y. Liu, J. Hamilton, R.R. Recker, Relationship of obesity with osteoporosis. J. Clin. Endocrinol. Metab. 92, 1640–1646 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. J.M. Patsch, F.W. Kiefer, P. Varga, P. Pail, M. Rauner, Increased bone resorption and impaired bone microarchitecture in short-term and extended high-fat diet-induced obesity. Metabolism. 60, 243–249 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. B. Osta, G. Benedetti, P. Miossec, Classical and paradoxical effects of TNF-alpha on bone homeostasis. Front. Immunol. 5, 48 (2014)

    PubMed Central  PubMed  Google Scholar 

  18. H. Kaneki, R. Guo, D. Chen, Z. Yao, E.M. Schwarz, Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J. Biol. Chem. 281, 4326–4333 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. K. Kobayashi, N. Takahashi, E. Jimi, N. Udagawa, M. Takami, Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 191, 275–286 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. M. Suzawa, I. Takada, J. Yanagisawa, F. Ohtake, S. Ogawa, Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB 1/NIK cascade. Nat. Cell Biol. 5, 224–230 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. D. Ron, A.R. Brasier, R.E. McGehee Jr, J.F. Habener, Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). J. Clin. Invest. 89, 223–233 (1992)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. G.S. Hotamisligil, P. Arner, J.F. Caro, R.L. Atkinson, B.M. Spiegelman, Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95, 2409–2415 (1995)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. F. Taghian, F. Esteki Ghashghaei, R. Badami, S. Esteki Ghashghaei, Comparison the effect of one session submaximal exercise on plasma levels of IL6 and TNF- a in obese and non-obese women. ARYA Atheroscler 6, 153–156 (2011)

    PubMed Central  PubMed  Google Scholar 

  24. H. Liang, B. Yin, H. Zhang, S. Zhang, Q. Zeng, Blockade of tumor necrosis factor (TNF) receptor type 1-mediated TNF-alpha signaling protected Wistar rats from diet-induced obesity and insulin resistance. Endocrinology 149, 2943–2951 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. M. Zhou, J. Ma, S. Chen, X. Chen, X. Yu, MicroRNA-17-92 cluster regulates osteoblast proliferation and differentiation. Endocrine 45, 302–310 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. Y. Yang, Y. Jiang, Y. Wang, W. An, Suppression of ABCA1 by unsaturated fatty acids leads to lipid accumulation in HepG2 cells. Biochimie 92, 958–963 (2010)

    Article  CAS  PubMed  Google Scholar 

  27. F. Parhami, Y. Tintut, W.G. Beamer, N. Gharavi, W. Goodman, Atherogenic high-fat diet reduces bone mineralization in mice. J. Bone Miner. Res. 16, 182–188 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. M. Bielohuby, M. Matsuura, N. Herbach, E. Kienzle, M. Slawik, Short-Term Exposure to Low-Carbohydrate, High-Fat Diets Induces Low Bone Mineral Density and Reduces Bone Formation in Rats. J. Bone Miner. Res. 25, 275–284 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. Y. Li, A. Li, K. Strait, H. Zhang, M.S. Nanes, Endogenous TNFalpha lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-kappaB. J. Bone Miner. Res. 22, 646–655 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. J.J. Cao, Effects of obesity on bone metabolism. J. Orthop. Surg. Res. 6, 30 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  31. C.L. Wu, B.O. Diekman, D. Jain, F. Guilak, Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fat pad: the effects of free fatty acids. Int. J. Obes. (Lond) 37, 1079–1087 (2013)

    Article  CAS  Google Scholar 

  32. J.P. Rodriguez, P. Astudillo, S. Rios, A.M. Pino, Involvement of adipogenic potential of human bone marrow mesenchymal stem cells (MSCs) in osteoporosis. Curr. Stem Cell Res. Ther. 3, 208–218 (2008)

    Article  CAS  PubMed  Google Scholar 

  33. J.R. Chen, O.P. Lazarenko, X. Wu, Y. Tong, M.L. Blackburn, Obesity reduces bone density associated with activation of PPARgamma and suppression of Wnt/beta-catenin in rapidly growing male rats. PLoS One 5, e13704 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  34. B. Lecka-Czernik, E.J. Moerman, D.F. Grant, J.M. Lehmann, S.C. Manolagas, Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 143, 2376–2384 (2002)

    CAS  PubMed  Google Scholar 

  35. K. Baek, H.R. Hwang, H.J. Park, A. Kwon, A.S. Qadir, TNF-alpha upregulates sclerostin expression in obese mice fed a high-fat diet. J. Cell. Physiol. 229, 640–650 (2014)

    Article  CAS  PubMed  Google Scholar 

  36. L. Zhao, J. Huang, H. Zhang, Y. Wang, L.E. Matesic, Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells 29, 1601–1610 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. L. Gilbert, X. He, P. Farmer, S. Boden, M. Kozlowski, Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology 141, 3956–3964 (2000)

    CAS  PubMed  Google Scholar 

  38. G. Duque, Bone and fat connection in aging bone. Curr. Opin. Rheumatol. 20, 429–434 (2008)

    Article  CAS  PubMed  Google Scholar 

  39. S. Khosla, Minireview: the OPG/RANKL/RANK system. Endocrinology 142, 5050–5055 (2001)

    Article  CAS  PubMed  Google Scholar 

  40. X.L. Ye, C.F. Lu, Association of polymorphisms in the leptin and leptin receptor genes with inflammatory mediators in patients with osteoporosis. Endocrine 44, 481–488 (2013)

    Article  CAS  PubMed  Google Scholar 

  41. Y.H. Zhang, A. Heulsmann, M.M. Tondravi, A. Mukherjee, Y. Abu-Amer, Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J. Biol. Chem. 276, 563–568 (2001)

    Article  CAS  PubMed  Google Scholar 

  42. P. Miossec, P. Chomarat, J. Dechanet, J.F. Moreau, J.P. Roux, Interleukin-4 inhibits bone resorption through an effect on osteoclasts and proinflammatory cytokines in an ex vivo model of bone resorption in rheumatoid arthritis. Arthritis Rheum. 37, 1715–1722 (1994)

    Article  CAS  PubMed  Google Scholar 

  43. M. Chabaud, P. Miossec, The combination of tumor necrosis factor alpha blockade with interleukin-1 and interleukin-17 blockade is more effective for controlling synovial inflammation and bone resorption in an ex vivo model. Arthritis Rheum. 44, 1293–1303 (2001)

    Article  CAS  PubMed  Google Scholar 

  44. J. Gomez-Ambrosi, A. Rodriguez, V. Catalan, G. Fruhbeck, The bone-adipose axis in obesity and weight loss. Obes. Surg. 18, 1134–1143 (2008)

    Article  CAS  PubMed  Google Scholar 

  45. M.W. Hamrick, C. Pennington, D. Newton, D. Xie, C. Isales, Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 34, 376–383 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. J.K. Elmquist, R.S. Ahima, E. Maratos-Flier, J.S. Flier, C.B. Saper, Leptin activates neurons in ventrobasal hypothalamus and brainstem. Endocrinology 138, 839–842 (1997)

    Article  CAS  PubMed  Google Scholar 

  47. T. Thomas, F. Gori, S. Khosla, M.D. Jensen, B. Burguera, Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140, 1630–1638 (1999)

    CAS  PubMed  Google Scholar 

  48. S. Sato, R. Hanada, A. Kimura, T. Abe, T. Matsumoto, Central control of bone remodeling by neuromedin U. Nat. Med. 13, 1234–1240 (2007)

    Article  CAS  PubMed  Google Scholar 

  49. P.A. Baldock, S.J. Allison, P. Lundberg, N.J. Lee, K. Slack, Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J. Biol. Chem. 282, 19092–19102 (2007)

    Article  CAS  PubMed  Google Scholar 

  50. M.S. Patel, F. Elefteriou, The new field of neuroskeletal biology. Calcif. Tissue Int. 80, 337–347 (2007)

    Article  CAS  PubMed  Google Scholar 

  51. T.G. Kirchgessner, K.T. Uysal, S.M. Wiesbrock, M.W. Marino, G.S. Hotamisligil, Tumor necrosis factor-alpha contributes to obesity-related hyperleptinemia by regulating leptin release from adipocytes. J. Clin. Invest. 100, 2777–2782 (1997)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. P. Sarraf, R.C. Frederich, E.M. Turner, G. Ma, N.T. Jaskowiak, Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J. Exp. Med. 185, 171–175 (1997)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. B.C. Villafuerte, J.B. Fine, Y. Bai, W. Zhao, S. Fleming, Expressions of leptin and insulin-like growth factor-I are highly correlated and region-specific in adipose tissue of growing rats. Obes. Res. 8, 646–655 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (No. 81370969, 81072190 to Yu X), the Ministry of Education of the People’s Republic of China (No. 20130181110066 to Yu X), and a Grant from the Chengdu Bureau of Science and Technology.

Conflict of interest

The authors all declare no financial or other potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijie Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Wang, C., Chen, Y. et al. Preservation of high-fat diet-induced femoral trabecular bone loss through genetic target of TNF-α. Endocrine 50, 239–249 (2015). https://doi.org/10.1007/s12020-015-0554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0554-5

Keywords

Navigation