, Volume 42, Issue 3, pp 653-657
Date: 02 Jun 2012

Thyroid function and stress hormones in children with stress hyperglycemia

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The purpose of the study is to determine the prevalence of stress hyperglycemia and to investigate how thyroid and stress hormones alter during stress hyperglycemia in children admitted to pediatric emergency wards. A prospective cross-sectional study was conducted in children, less than 19 years old, who were admitted to pediatric emergency wards of Nemazee and Dastgheib Hospitals, Shiraz, Southern Iran. Those patients taking steroids, beta-agonists or intravenously administered glucose before venipuncture, and patients with diabetes mellitus (DM) or thyroid diseases were excluded. Children with blood glucose ≥150 mg/dL during admission were regarded as cases. The controls were age- and- sex- matched, euglycemic children. Stress hormones including cortisol, insulin, growth hormone, and prolactin were measured, and thyroid function was tested with a radioimmunoassay (RIA) method in all cases and controls. The resuts showed that among 1,054 screened children, 39 cases (3.7 %) had stress hyperglycemia and 89 controls were included in the study. The occurrence of hyperglycemia was independent of sex, but it occurred mostly in children under 6 years old. Hyperglycemia occurred more frequently in patients with a positive family history of DM (odds ratio = 3.2, 95 % CI = 1.3–7.9, and P = 0.009). There were no significant differences between cases and controls regarding any hormones except higher cortisol, and lower total T3 and T4 in cases compared with controls. Neither of cases developed diabetes in the 24-month follow-up period. These findings led us to the conclusion that stress hyperglycemia is occasionally seen in critically ill patients. Among the stress hormones measured, only cortisol increased during hyperglycemia. It seems that hyperglycemia is not an important risk factor for future diabetes.