Skip to main content

Advertisement

Log in

Does Concurrent Use of Some Botanicals Interfere with Treatment of Tuberculosis?

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Millions of individuals with active TB do not receive recommended treatments, and instead may use botanicals, or use botanicals concurrently with established treatments. Many botanicals protect against oxidative stress, but this can interfere with redox-dependent activation of isoniazid and other prodrugs used for prophylaxis and treatment of TB, as suggested by results of a recent clinical trial of the South African botanical Sutherlandia frutescens (L.) R. Br. (Sutherlandia). Here we provide a brief summary of Sutherlandia’s effects upon rodent microglia and neurons relevant to tuberculosis of the central nervous system (CNS-TB). We have observed that ethanolic extracts of Sutherlandia suppress production of reactive oxygen species (ROS) in rat primary cortical neurons stimulated by NMDA and also suppress LPS- and interferon γ (IFNγ)-induced ROS and nitric oxide (NO) production by microglial cells. Sutherlandia consumption mitigates microglial activation in the hippocampus and striatum of ischemic brains of mice. RNAseq analysis indicates that Sutherlandia suppresses gene expression of oxidative stress, inflammatory signaling and toll-like receptor pathways that can reduce the host’s immune response to infection and reactivation of latent Mycobacterium tuberculosis. As a precautionary measure, we recommend that individuals receiving isoniazid for pulmonary or cerebral TB, be advised not to concurrently use botanicals or dietary supplements having antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Africa, L. D., & Smith, C. (2015). Sutherlandia frutescens may exacerbate HIV-associated neuroinflammation. Journal of Negative Results in Biomedicine, 14, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baulard, A. R., Betts, J. C., et al. (2000). Activation of the pro-drug ethionamide is regulated in mycobacteria. Journal of Biological Chemistry, 275(36), 28326–28331.

    CAS  PubMed  Google Scholar 

  • Block, M. L., Zecca, L., et al. (2007). Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nature Reviews Neuroscience, 8(1), 57–69.

    Article  CAS  PubMed  Google Scholar 

  • Brown, G. C., & Neher, J. J. (2010). Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Molecular Neurobiology, 41(2–3), 242–247.

    Article  CAS  PubMed  Google Scholar 

  • Calabrese, V., Cornelius, C., et al. (2009). Nitric oxide in cell survival: A janus molecule. Antioxidants and Redox Signaling, 11(11), 2717–2739.

    Article  CAS  PubMed  Google Scholar 

  • Chin, J. H., & Mateen, F. J. (2013). Central nervous system tuberculosis: Challenges and advances in diagnosis and treatment. Current Infectious Disease Reports, 15, 631–635.

    Article  Google Scholar 

  • Chuang, D. Y., Cui, J., et al. (2014). Dietary Sutherlandia and elderberry mitigate cerebral ischemia-induced neuronal damage and attenuate p47phox and phospho-ERK1/2 expression in microglial cells. ASN Neuro, 6(6), 1–14.

    Article  CAS  Google Scholar 

  • Davids, D., Blouws, T., et al. (2014). Traditional health practitioners’ perceptions, herbal treatment and management of HIV and related opportunistic infections. Journal of Ethnobiology and Ethnomedicine, 10(1), 1–14.

    Article  Google Scholar 

  • Fernandes, A. C., Cromarty, A. D., Albrecht, C., & van Rensburg, C. E. (2004). The antioxidant potential of Sutherlandia frutescens. Journal of Ethnopharmacology, 95, 1–5.

    Article  PubMed  Google Scholar 

  • Francisco, N. M., Hsu, N. J., et al. (2015). TNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis. Journal of Neuroinflammation, 12, 125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Graeber, M. B., & Streit, W. J. (2010). Microglia: Biology and pathology. Acta Neuropathologica, 119(1), 89–105.

    Article  PubMed  Google Scholar 

  • Isabel, B. E., & Rogelio, H. P. (2014). Pathogenesis and immune response in tuberculous meningitis. The Malaysian Journal of Medical Sciences: MJMS, 21(1), 4–10.

    PubMed  PubMed Central  Google Scholar 

  • Jiang, J., Chuang, D. Y., et al. (2014). Sutherlandia frutescens ethanol extracts inhibit oxidative stress and inflammatory responses in neurons and microglial cells. PLoS One, 9(2), e89748.

    Article  PubMed  Google Scholar 

  • John, C. C., Carabin, H., et al. (2015). Global research priorities for infections that affect the nervous system. Nature, 527(7578), S178–S186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katerere, D. R., & Eloff, J. N. (2005). Antibacterial and antioxidant activity of Sutherlandia frutescens (Fabaceae), a reputed anti-HIV/AIDS phytomedicine. Phytotherapy Research, 19, 779–781.

    Article  PubMed  Google Scholar 

  • Kumar, A., Farhana, A., et al. (2011). Redox homeostasis in mycobacteria: The key to tuberculosis control? Expert Reviews in Molecular Medicine, 13, e39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, Y., Starkey, N., et al. (2015). Inhibition of Hedgehog-signaling driven genes in prostate cancer cells by Sutherlandia frutescens extract. PLoS One, 10(12), e0145507.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra, B. B., Rathinam, V. A., et al. (2013). Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1beta. Nature Immunology, 14(1), 52–60.

    Article  CAS  PubMed  Google Scholar 

  • Olin, M. R., Armien, A. G., et al. (2008). Role of nitric oxide in defense of the central nervous system against Mycobacterium tuberculosis. Journal of Infectious Diseases, 198(6), 886–889.

    Article  PubMed  Google Scholar 

  • Pacher, P., Beckman, J. S., et al. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 87(1), 315–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian, L., & Flood, P. M. (2008). Microglial cells and Parkinson’s disease. Immunologic Research, 41(3), 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Randall, P. J., Hsu, N. J., et al. (2015). Mycobacterium tuberculosis infection of the ‘non-classical immune cell’. Immunology and Cell Biology, 93(9), 789–795.

    Article  CAS  PubMed  Google Scholar 

  • Rapanoel, H. A., Mazandu, G. K., et al. (2013). Predicting and analyzing interactions between Mycobacterium tuberculosis and its human host. PLoS One, 8(7), e67472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rock, R. B., Olin, M., Baker, C. A., Molitor, T. W., & Peterson, P. K. (2008). Central nervous system tuberculosis: Pathogenesis and clinical aspects. Clinical Microbiology Reviews, 21(2), 243–261. (table of contents).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers, J., Mastroeni, D., et al. (2007). Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: Are microglia pathogenic in either disorder? International Review of Neurobiology, 82, 235–246.

    Article  CAS  PubMed  Google Scholar 

  • Saenz, B., Hernandez-Pando, R., et al. (2013). The dual face of central nervous system tuberculosis: A new Janus Bifrons? Tuberculosis (Edinb), 93(2), 130–135.

    Article  Google Scholar 

  • Singh, R., Manjunatha, U., et al. (2008). PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science, 322(5906), 1392–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streit, W. J. (2010). Microglial activation and neuroinflammation in Alzheimer’s disease: A critical examination of recent history. Frontiers in Aging Neuroscience, 2, 22.

    PubMed  PubMed Central  Google Scholar 

  • Sutherlandia.org. (2016). Sutherlandia.org. http://sutherlandia.org/index.html.

  • Thwaites, G. E. & Schoeman J. F. (2009). Update on tuberculosis of the central nervous system: Pathogenesis, diagnosis, and treatment. Clinics in Chest Medicine, 30(4), 745–754, ix.

  • Timmins, G. S., & Deretic, V. (2006). Mechanisms of action of isoniazid. Molecular Microbiology, 62(5), 1220–1227.

    Article  CAS  PubMed  Google Scholar 

  • Timmins, G. S., Master, S., et al. (2004a). Nitric oxide generated from isoniazid activation by KatG: Source of nitric oxide and activity against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 48(8), 3006–3009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmins, G. S., Master, S., et al. (2004b). Requirements for nitric oxide generation from isoniazid activation in vitro and inhibition of mycobacterial respiration in vivo. Journal of Bacteriology, 186(16), 5427–5431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobwala, S., Fan, W., Hines, C. J., Folk, W. R., & Ercal, N. (2014). Antioxidant potential of Sutherlandia frutescens and its protective effects against oxidative stress in various cell cultures. BMC Complementary Alternative Medicine, 14, 271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsang, A. H., & Chung, K. K. (2009). Oxidative and nitrosative stress in Parkinson’s disease. Biochimica et Biophysica Acta (BBA), 1792(7), 643–650.

    Article  CAS  Google Scholar 

  • van Wyk, B. E., & Albrecht, C. (2008). A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae). Journal of Ethnopharmacology, 119(3), 620–629.

    Article  PubMed  Google Scholar 

  • Vilcheze, C., & Jacobs, W. R, Jr. (2007). The mechanism of isoniazid killing: Clarity through the scope of genetics. Annual Review of Microbiology, 61, 35–50.

    Article  CAS  PubMed  Google Scholar 

  • Voskuil, M. I., Bartek, I. L., et al. (2011). The response of mycobacterium tuberculosis to reactive oxygen and nitrogen species. Frontiers in Microbiology, 2, 105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO. (2013). Traditional Medicine Strategy 2014-2023. Geneva: World Health Organization.

    Google Scholar 

  • WHO. (2015). Recommendation on 36 months isoniazid preventive therapy to adults and adolescents living with HIV in resource-constrained and high TB- and HIV-prevalence settings: 2015 Update. Geneva.

  • WHO. (2015b). Global Tuberculosis Report 2015. Geneva: World Health Organization.

    Google Scholar 

  • Wilson, D., Goggin, K., et al. (2015). Consumption of Sutherlandia frutescens by HIV-Seropositive South African Adults: An adaptive double-blind randomized placebo controlled trial. PLoS ONE, 10(7), e0128522.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, C. S., Lee, H. M., et al. (2007). Reactive oxygen species and p47phox activation are essential for the Mycobacterium tuberculosis-induced pro-inflammatory response in murine microglia. Journal of Neuroinflammation, 4, 27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, C. S., Yuk, J. M., et al. (2009). The role of nitric oxide in mycobacterial infections. Immune Network, 9(2), 46–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank members of the MU Center for Botanical Interaction Studies for advice and technical assistance. Financial support was provided by Grant P50AT006273 from the National Center for Complementary and Integrative Health (NCCIH) and the Office of Dietary Supplements (ODS) and the University of Missouri. The contents are solely the responsibility of the authors and do not necessarily reflect the views of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Folk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Folk, W.R., Smith, A., Song, H. et al. Does Concurrent Use of Some Botanicals Interfere with Treatment of Tuberculosis?. Neuromol Med 18, 483–486 (2016). https://doi.org/10.1007/s12017-016-8402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-016-8402-1

Keywords

Navigation