, Volume 15, Issue 1, pp 169-179
Date: 07 Dec 2012

Aβ1-15/16 as a Potential Diagnostic Marker in Neurodegenerative Diseases

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease (AD) reflect brain biochemistry. Using combined immunoprecipitation and mass spectrometry, we have shown that amyloid beta 1-15 (Aβ1-15) is produced by concerted β- and α-secretase cleavage of amyloid precursor protein (APP) and that the relative levels of Aβ1-16 in AD compared to controls are increased. Furthermore, drug-induced γ-secretase inhibition enhances the relative levels of Aβ1-15 and Aβ1-16. Here, we investigate a novel immunoassay for Aβ1-15/16 in a broad range of neurodegenerative conditions. The CSF level of Aβ1-15/16 was measured by the bead-based amplified luminescent proximity homogeneous assay (Alpha technology). Concentrations of Aβ1-15/16 were analyzed in subjects with Parkinson disease (PD; n = 90), PD with dementia (PDD) (n = 32), dementia with Lewy bodies (DLB) (n = 68), AD (n = 48), progressive supranuclear palsy (PSP) (n = 45), multiple system atrophy (MSA) (n = 46), and corticobasal degeneration (CBD) (n = 12). The detecting antibody is specific to the C-terminal epitope of Aβ15. We found that a carboxypeptidase (CPB) present in fetal bovine serum (FBS), a component of the buffers used, degrades Aβ1-16 to Aβ1-15, which is then detected by the Aβ1-15/16 assay. Significantly, lower levels of Aβ1-15/16 were detected in PD, PDD, PSP, and MSA compared to other neurodegenerative diseases and controls. Using the specific Aβ1-15/16 assay, a reliable quantification of Aβ1-15 or Aβ1-15/16 in CSF samples is obtained. We found reduced levels of Aβ1-15 in parkinsonian disease groups. The molecular mechanism behind this reduction is at present unknown.