Skip to main content

Advertisement

Log in

Fucosyltransferase 2: A Genetic Risk Factor for Primary Sclerosing Cholangitis and Crohn's Disease—A Comprehensive Review

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Fucosyltransferase 2 (FUT2) mediates the inclusion of fucose in sugar moieties of glycoproteins and glycolipids. ABO blood group antigens and host-microbe interactions are influenced by FUT2 activity. About 20 % of the population has a “non-secretor” status caused by inactivating variants of FUT2 on both alleles. The non-sense mutation G428A and the missense mutation A385T are responsible for the vast majority of the non-secretor status in Caucasians, Africans, and Asians, respectively. Non-secretor individuals do not secrete fucose-positive antigens and lack fucosylation in epithelia. They also appear to be protected against a number of infectious diseases, such as Norovirus and Rotavirus infections. In recent years, genome-wide association studies (GWAS) identified inactivating variants at the FUT2 locus to be associated with primary sclerosing cholangitis (PSC), Crohn’s disease (CD), and biochemical markers of biliary damage. These associations are intriguing given the important roles of fucosylated glycans in host-microbe interactions and membrane stability. Non-secretors have a reduced fecal content of Bifidobacteria. The intestinal bacterial composition of CD patients resembles the one of non-secretors, with an increase in Firmicutes and decreases in Proteobacteria and Actinobacteria. Non-secretor individuals lack fucosylated glycans at the surface of biliary epithelium and display a different bacterial composition of bile compared to secretors. Notably, an intact biliary epithelial glycocalix is relevant for a stable ‘biliary HCO3 umbrella’ to protect against toxic effects of hydrophobic bile salt monomers. Here, the biology of FUT2 will be discussed as well as hypotheses to explain the role of FUT2 in the pathophysiology of PSC and Crohn’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Oriol R, Mollicone R, Cailleau A, Balanzino L, Breton C (1999) Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. Glycobiology 9:323–334

    CAS  PubMed  Google Scholar 

  2. Ma B, Simala-Grant JL, Taylor DE (2006) Fucosylation in prokaryotes and eukaryotes. Glycobiology 16:158R–184R

    CAS  PubMed  Google Scholar 

  3. Becker DJ, Lowe JB (2003) Fucose: biosynthesis and biological function in mammals. Glycobiology 13:41R–53R

    CAS  PubMed  Google Scholar 

  4. Rouquier S, Lowe JB, Kelly RJ, Fertitta AL, Lennon GG, Giorgi D (1995) Molecular cloning of a human genomic region containing the H blood group alpha(1,2)fucosyltransferase gene and two H locus-related DNA restriction fragments. Isolation of a candidate for the human secretor blood group locus. J Biol Chem 270:4632–4639

    CAS  PubMed  Google Scholar 

  5. Avent ND (1997) Human erythrocyte antigen expression: its molecular bases. Br J Biomed Sci 54:16–37

    CAS  PubMed  Google Scholar 

  6. Tonetti M, Sturla L, Bisso A, Benatti U, De Flora A (1996) Synthesis of GDP-L-fucose by the human FX protein. J Biol Chem 271:27274–27279

    CAS  PubMed  Google Scholar 

  7. Kaufman RL, Ginsburg V (1968) The metabolism of L-fucose by HeLa cells. Exp Cell Res 50:127–132

    CAS  PubMed  Google Scholar 

  8. Yamamoto K, Katayama I, Onoda Y, Inami M, Kumagai H, Tochikura T (1993) Evidence that the enzyme catalyzing the conversion of guanosine diphosphate D-mannose to a 4-keto sugar nucleotide intermediate requires nicotinamide adenine dinucleotide phosphate. Arch Biochem Biophys 300:694–698

    CAS  PubMed  Google Scholar 

  9. Wiese TJ, Dunlap JA, Yorek MA (1994) L-fucose is accumulated via a specific transport system in eukaryotic cells. J Biol Chem 269:22705–22711

    CAS  PubMed  Google Scholar 

  10. Michalski JC, Klein A (1999) Glycoprotein lysosomal storage disorders: alpha- and beta-mannosidosis, fucosidosis and alpha-N-acetylgalactosaminidase deficiency. Biochim Biophys Acta 1455:69–84

    CAS  PubMed  Google Scholar 

  11. Yurchenco PD, Atkinson PH (1977) Equilibration of fucosyl glycoprotein pools in HeLa cells. Biochemistry 16:944–953

    CAS  PubMed  Google Scholar 

  12. Larsen RD, Ernst LK, Nair RP, Lowe JB (1990) Molecular cloning, sequence, and expression of a human GDP-L-fucose: beta-D-galactoside 2-alpha-L-fucosyltransferase cDNA that can form the H blood group antigen. Proc Natl Acad Sci U S A 87:6674–6678

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB (1995) Sequence and expression of a candidate for the human secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J Biol Chem 270:4640–4649

    CAS  PubMed  Google Scholar 

  14. Kyprianou P, Betteridge A, Donald AS, Watkins WM (1990) Purification of the blood group H gene associated alpha-2-L-fucosyltransferase from human plasma. Glycoconj J 7:573–588

    CAS  PubMed  Google Scholar 

  15. Sarnesto A, Kohlin T, Thurin J, Blaszczyk-Thurin M (1990) Purification of H gene-encoded beta-galactoside alpha 1–2 fucosyltransferase from human serum. J Biol Chem 265:15067–15075

    CAS  PubMed  Google Scholar 

  16. Hoskins LC (1967) The ABO blood group antigens and their secretion by healthy and diseased gastric mucosa. Ann N Y Acad Sci 140:848–865

    CAS  PubMed  Google Scholar 

  17. Oriol R, Danilovs J, Hawkins BR (1981) A new genetic model proposing that the Se gene is a structural gene closely linked to the H gene. Am J Hum Genet 33:421–431

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Lowe JB (1993) The blood group-specific human glycosyltransferases. Baillieres Clin Haematol 6:465–492

    CAS  PubMed  Google Scholar 

  19. Liu YH, Koda Y, Soejima M et al (1998) Extensive polymorphism of the FUT2 gene in an African (Xhosa) population of South Africa. Hum Genet 103:204–210

    CAS  PubMed  Google Scholar 

  20. Svensson L, Petersson A, Henry SM (2000) Secretor genotyping for A385T, G428A, C571T, C628T, 685delTGG, G849A, and other mutations from a single PCR. Transfusion 40:856–860

    CAS  PubMed  Google Scholar 

  21. Henry S, Mollicone R, Fernandez P, Samuelsson B, Oriol R, Larson G (1996) Molecular basis for erythrocyte Le(a + b+) and salivary ABH partial-secretor phenotypes: expression of a FUT2 secretor allele with an A- > T mutation at nucleotide 385 correlates with reduced alpha(1,2)fucosyltransferase activity. Glycoconjugate J 13:985–993

    CAS  Google Scholar 

  22. Yu LC, Yang YH, Broadberry RE, Chen YH, Chan YS, Lin M (1995) Correlation of a missense mutation in the human secretor alpha-1,2-fucosyl-transferase gene with the Lewis(A + B+) phenotype—a potential molecular-basis for the weak secretor allele (Se-W). Biochem J 312:329–332

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Koda Y, Soejima M, Liu YH, Kimura H (1996) Molecular basis for secretor type alpha(1,2)-fucosyltransferase gene deficiency in a Japanese population: a fusion gene generated by unequal crossover responsible for the enzyme deficiency. Am J Hum Genet 59:343–350

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Koda Y, Soejima M, Kimura H (2001) The polymorphisms of fucosyltransferases. Leg Med (Tokyo) 3:2–14

    CAS  Google Scholar 

  25. Soejima M, Pang H, Koda Y (2007) Genetic variation of FUT2 in a Ghanaian population: identification of four novel mutations and inference of balancing selection. Ann Hematol 86:199–204

    PubMed  Google Scholar 

  26. Walsh EC, Sabeti P, Hutcheson HB et al (2006) Searching for signals of evolutionary selection in 168 genes related to immune function. Hum Genet 119:92–102

    CAS  PubMed  Google Scholar 

  27. Ferrer-Admetlla A, Sikora M, Laayouni H et al (2009) A natural history of FUT2 polymorphism in humans. Mol Biol Evol 26:1993–2003

    CAS  PubMed  Google Scholar 

  28. Thorven M, Grahn A, Hedlund KO et al (2005) A homozygous nonsense mutation (428G– > A) in the human secretor (FUT2) gene provides resistance to symptomatic Norovirus (GGII) infections. J Virol 79:15351–15355

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Hazra A, Kraft P, Selhub J et al (2008) Common variants of FUT2 are associated with plasma vitamin B12 levels. Nat Genet 40:1160–1162

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434

    CAS  PubMed  Google Scholar 

  31. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429

    CAS  PubMed  Google Scholar 

  32. Brant SR (2013) Promises, delivery, and challenges of inflammatory bowel disease risk gene discovery. Clin Gastroenterol Hepatol 11:22–26

    PubMed  Google Scholar 

  33. Jostins L, Ripke S, Weersma RK et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–124

    PubMed Central  CAS  PubMed  Google Scholar 

  34. van Heel DA, Fisher SA, Kirby A, Daly MJ, Rioux JD, Lewis CM (2004) Inflammatory bowel disease susceptibility loci defined by genome scan meta-analysis of 1952 affected relative pairs. Hum Mol Genet 13:763–770

    PubMed  Google Scholar 

  35. McGovern DP, Jones MR, Taylor KD et al (2010) Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn's disease. Hum Mol Genet 19:3468–3476

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Serpa J, Mendes N, Reis CA et al (2004) Two new FUT2 (fucosyltransferase 2 gene) missense polymorphisms, 739G– > A and 839 T– > C, are partly responsible for non-secretor status in a Caucasian population from Northern Portugal. Biochem J 383:469–474

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Franke A, McGovern DP, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 42:1118–1125

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Miyoshi J, Yajima T, Okamoto S et al (2011) Ectopic expression of blood type antigens in inflamed mucosa with higher incidence of FUT2 secretor status in colonic Crohn's disease. J Gastroenterol 46:1056–1063

    CAS  PubMed  Google Scholar 

  39. Inoue N, Tamura K, Kinouchi Y et al (2002) Lack of common NOD2 variants in Japanese patients with Crohn’s disease. Gastroenterology 123:86–91

    CAS  PubMed  Google Scholar 

  40. Loh G, Blaut M (2012) Role of commensal gut bacteria in inflammatory bowel diseases. Gut Microbes 3:544–555

    PubMed Central  PubMed  Google Scholar 

  41. Boren T, Falk P, Roth KA, Larson G, Normark S (1993) Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262:1892–1895

    CAS  PubMed  Google Scholar 

  42. Hooper LV, Gordon JI (2001) Glycans as legislators of host-microbial interactions: spanning the spectrum from symbiosis to pathogenicity. Glycobiology 11:1R–10R

    CAS  PubMed  Google Scholar 

  43. Meijerink E, Neuenschwander S, Fries R et al (2000) A DNA polymorphism influencing alpha(1,2)fucosyltransferase activity of the pig FUT1 enzyme determines susceptibility of small intestinal epithelium to Escherichia coli F18 adhesion. Immunogenetics 52:129–136

    CAS  PubMed  Google Scholar 

  44. Bry L, Falk PG, Midtvedt T, Gordon JI (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science 273:1380–1383

    CAS  PubMed  Google Scholar 

  45. Nanthakumar NN, Dai D, Newburg DS, Walker WA (2003) The role of indigenous microflora in the development of murine intestinal fucosyl- and sialyltransferases. FASEB J 17:44–46

    CAS  PubMed  Google Scholar 

  46. Nanthakumar NN, Meng D, Newburg DS (2013) Glucocorticoids and microbiota regulate ontogeny of intestinal fucosyltransferase 2 requisite for gut homeostasis. Glycobiology 23:1131–1141

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Wacklin P, Makivuokko H, Alakulppi N et al (2011) Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS ONE 6:e20113

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Rausch P, Rehman A, Kunzel S et al (2011) Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (secretor) genotype. Proc Natl Acad Sci U S A 108:19030–19035

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Franks I (2012) Gut microbiota: FUT2 genotype influences the gut microbiota in patients with Crohn's disease and healthy individuals. Nat Rev Gastroenterol Hepatol 9:2

    Google Scholar 

  50. Aheman A, Luo HS, Gao F (2012) Association of fucosyltransferase 2 gene variants with ulcerative colitis in Han and Uyghur patients in China. World J Gastroenterol 18:4758–4764

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Parmar AS, Alakulppi N, Paavola-Sakki P et al (2012) Association study of FUT2 (rs601338) with celiac disease and inflammatory bowel disease in the Finnish population. Tissue Antigens 80:488–493

    CAS  PubMed  Google Scholar 

  52. Fiocchi C (1998) Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 115:182–205

    CAS  PubMed  Google Scholar 

  53. Eaton JE, Talwalkar JA, Lazaridis KN, Gores GJ, Lindor KD (2013) Pathogenesis of primary sclerosing cholangitis and advances in diagnosis and management. Gastroenterology 145:521–536

    CAS  PubMed  Google Scholar 

  54. Bergquist A, Lindberg G, Saarinen S, Broome U (2005) Increased prevalence of primary sclerosing cholangitis among first-degree relatives. J Hepatol 42:252–256

    PubMed  Google Scholar 

  55. Karlsen TH, Franke A, Melum E et al (2010) Genome-wide association analysis in primary sclerosing cholangitis. Gastroenterology 138:1102–1111

    PubMed  Google Scholar 

  56. Hirschfield GM, Karlsen TH, Lindor KD, Adams DH (2013) Primary sclerosing cholangitis. Lancet 382:1587–1599

    PubMed  Google Scholar 

  57. Tabibian JH, Talwalkar JA, Lindor KD (2013) Role of the microbiota and antibiotics in primary sclerosing cholangitis. Biomed Res Int 2013:389537

    PubMed Central  PubMed  Google Scholar 

  58. Bjornsson E, Cederborg A, Akvist A, Simren M, Stotzer PO, Bjarnason I (2005) Intestinal permeability and bacterial growth of the small bowel in patients with primary sclerosing cholangitis. Scand J Gastroenterol 40:1090–1094

    PubMed  Google Scholar 

  59. Pohl J, Ring A, Stremmel W, Stiehl A (2006) The role of dominant stenoses in bacterial infections of bile ducts in primary sclerosing cholangitis. Eur J Gastroenterol Hepatol 18:69–74

    PubMed  Google Scholar 

  60. Olsson R, Bjornsson E, Backman L et al (1998) Bile duct bacterial isolates in primary sclerosing cholangitis: a study of explanted livers. J Hepatol 28:426–432

    CAS  PubMed  Google Scholar 

  61. O'Mahony CA, Vierling JM (2006) Etiopathogenesis of primary sclerosing cholangitis. Semin Liver Dis 26:3–21

    PubMed  Google Scholar 

  62. O'Hara SP, Tabibian JH, Splinter PL, LaRusso NF (2013) The dynamic biliary epithelia: molecules, pathways, and disease. J Hepatol 58:575–582

    PubMed  Google Scholar 

  63. Folseraas T, Melum E, Rausch P et al (2012) Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J Hepatol 57:366–375

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Chambers JC, Zhang W, Sehmi J et al (2011) Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet 43:1131–1138

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Pratt DS, Kaplan MM (2000) Evaluation of abnormal liver-enzyme results in asymptomatic patients. N Engl J Med 342:1266–1271

    CAS  PubMed  Google Scholar 

  66. Chapman R, Fevery J, Kalloo A et al (2010) Diagnosis and management of primary sclerosing cholangitis. Hepatology 51:660–678

    CAS  PubMed  Google Scholar 

  67. Beuers U, Hohenester S, de Buy Wenniger LJ, Kremer AE, Jansen PL, Elferink RP (2010) The biliary HCO(3)(−) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 52:1489–1496

    CAS  PubMed  Google Scholar 

  68. Hohenester S, Wenniger LM, Paulusma CC et al (2012) A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 55:173–183

    CAS  PubMed  Google Scholar 

  69. Meesmann HM, Fehr EM, Kierschke S et al (2010) Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes. J Cell Sci 123:3347–3356

    CAS  PubMed  Google Scholar 

  70. Linnartz B, Kopatz J, Tenner AJ, Neumann H (2012) Sialic acid on the neuronal glycocalyx prevents complement C1 binding and complement receptor-3-mediated removal by microglia. J Neurosci 32:946–952

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Krahling H, Mally S, Eble JA, Noel J, Schwab A, Stock C (2009) The glycocalyx maintains a cell surface pH nanoenvironment crucial for integrin-mediated migration of human melanoma cells. Pflugers Arch 458:1069–1083

    PubMed  Google Scholar 

  72. Stock C, Mueller M, Kraehling H et al (2007) pH nanoenvironment at the surface of single melanoma cells. Cell Physiol Biochem 20:679–686

    CAS  PubMed  Google Scholar 

  73. Azevedo M, Eriksson S, Mendes N et al (2008) Infection by Helicobacter pylori expressing the BabA adhesin is influenced by the secretor phenotype. J Pathol 215:308–316

    CAS  PubMed  Google Scholar 

  74. Ikehara Y, Nishihara S, Yasutomi H et al (2001) Polymorphisms of two fucosyltransferase genes (Lewis and secretor genes) involving type I Lewis antigens are associated with the presence of anti-Helicobacter pylori IgG antibody. Cancer Epidemiol Biomarkers Prev 10:971–977

    CAS  PubMed  Google Scholar 

  75. Lee HS, Choe G, Kim WH, Kim HH, Song J, Park KU (2006) Expression of Lewis antigens and their precursors in gastric mucosa: relationship with Helicobacter pylori infection and gastric carcinogenesis. J Pathol 209:88–94

    CAS  PubMed  Google Scholar 

  76. Magalhaes A, Gomes J, Ismail MN et al (2009) Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa. Glycobiology 19:1525–1536

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Evans DA, Horwich L, McConnell RB, Bullen MF (1968) Influence of the ABO blood groups and secretor status on bleeding and on perforation of duodenal ulcer. Gut 9:319–322

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Carlsson B, Kindberg E, Buesa J et al (2009) The G428A nonsense mutation in FUT2 provides strong but not absolute protection against symptomatic GII.4 Norovirus infection. PLoS ONE 4:e5593

    PubMed Central  PubMed  Google Scholar 

  79. Kindberg E, Akerlind B, Johnsen C et al (2007) Host genetic resistance to symptomatic Norovirus (GGII.4) infections in Denmark. J Clin Microbiol 45:2720–2722

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Kaplan JE, Gary GW, Baron RC et al (1982) Epidemiology of Norwalk gastroenteritis and the role of Norwalk virus in outbreaks of acute nonbacterial gastroenteritis. Ann Intern Med 96:756–761

    CAS  PubMed  Google Scholar 

  81. Huang P, Farkas T, Marionneau S et al (2003) Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J Infect Dis 188:19–31

    CAS  PubMed  Google Scholar 

  82. Larsson MM, Rydell GE, Grahn A et al (2006) Antibody prevalence and titer to Norovirus (genogroup II) correlate with secretor (FUT2) but not with ABO phenotype or Lewis (FUT3) genotype. J Infect Dis 194:1422–1427

    CAS  PubMed  Google Scholar 

  83. Van Kruiningen HJ, Mayo DR, Vanopdenbosch E, Gower-Rousseau C, Cortot A, Colombel JF (2000) Virus serology in familial Crohn disease. Scand J Gastroenterol 35:403–407

    PubMed  Google Scholar 

  84. Chamaillard M, Cesaro A, Lober PE, and Hober D (2013) Decoding Norovirus infection in Crohn’s disease. Inflamm Bowel Dis

  85. Imbert-Marcille BM, Barbe L, Dupe M, et al. (2013), A FUT2 gene common polymorphism determines resistance to Rotavirus A of the P [8] genotype. J Infect Dis

  86. Kinane DF, Blackwell CC, Brettle RP, Weir DM, Winstanley FP, Elton RA (1982) ABO blood group, secretor state, and susceptibility to recurrent urinary tract infection in women. Br Med J (Clin Res Ed) 285:7–9

    CAS  Google Scholar 

  87. Hooton TM (2000) Pathogenesis of urinary tract infections: an update. J Antimicrob Chemother 46(Suppl 1):1–7, discussion 63–5

    CAS  Google Scholar 

  88. Ishitoya S, Yamamoto S, Mitsumori K, Ogawa O, Terai A (2002) Non-secretor status is associated with female acute uncomplicated pyelonephritis. BJU Int 89:851–854

    CAS  PubMed  Google Scholar 

  89. Ben-Aryeh H, Blumfield E, Szargel R, Laufer D, Berdicevsky I (1995) Oral Candida carriage and blood group antigen secretor status. Mycoses 38:355–358

    CAS  PubMed  Google Scholar 

  90. Thom SM, Blackwell CC, MacCallum CJ et al (1989) Non-secretion of blood group antigens and susceptibility to infection by Candida species. FEMS Microbiol Immunol 1:401–405

    CAS  PubMed  Google Scholar 

  91. Chaim W, Foxman B, Sobel JD (1997) Association of recurrent vaginal candidiasis and secretory ABO and Lewis phenotype. J Infect Dis 176:828–830

    CAS  PubMed  Google Scholar 

  92. Blackwell CC, Jonsdottir K, Hanson MF, Weir DM (1986) Non-secretion of ABO blood group antigens predisposing to infection by Haemophilus influenzae. Lancet 2:687

    CAS  PubMed  Google Scholar 

  93. Blackwell CC, Jonsdottir K, Hanson M et al (1986) Non-secretion of ABO antigens predisposing to infection by Neisseria meningitidis and Streptococcus pneumoniae. Lancet 2:284–285

    CAS  PubMed  Google Scholar 

  94. Tanaka T, Scheet P, Giusti B et al (2009) Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. Am J Hum Genet 84:477–482

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Lin X, Lu D, Gao Y et al (2012) Genome-wide association study identifies novel loci associated with serum level of vitamin B12 in Chinese men. Hum Mol Genet 21:2610–2617

    CAS  PubMed  Google Scholar 

  96. Hazra A, Kraft P, Lazarus R et al (2009) Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway. Hum Mol Genet 18:4677–4687

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Watanabe F (2007) Vitamin B12 sources and bioavailability. Exp Biol Med (Maywood) 232:1266–1274

    CAS  Google Scholar 

  98. Oussalah A, Besseau C, Chery C et al (2012) Helicobacter pylori serologic status has no influence on the association between fucosyltransferase 2 polymorphism (FUT2 461 G- > A) and vitamin B-12 in Europe and West Africa. Am J Clin Nutr 95:514–521

    CAS  PubMed  Google Scholar 

  99. Chery C, Hehn A, Mrabet N et al (2013) Gastric intrinsic factor deficiency with combined GIF heterozygous mutations and FUT2 secretor variant. Biochimie 95:995–1001

    CAS  PubMed  Google Scholar 

  100. Tang H, Jin X, Li Y et al (2014) A large-scale screen for coding variants predisposing to psoriasis. Nat Genet 46:45–50

    CAS  PubMed  Google Scholar 

  101. Ellinghaus D, Ellinghaus E, Nair RP et al (2012) Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am J Hum Genet 90:636–647

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Xavier JM, Shahram F, Sousa I, et al. (2013) FUT2: filling the gap between genes and environment in Behcet’s disease? Ann Rheum Dis

  103. van Meurs JB, Pare G, Schwartz SM et al (2013) Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. Am J Clin Nutr 98:668–676

    PubMed Central  PubMed  Google Scholar 

  104. Tregouet DA, Sabater-Lleal M, Bruzelius M et al (2012) Lack of association of non-synonymous FUT2 and ALPL polymorphisms with venous thrombosis. J Thromb Haemost 10:1693–1695

    CAS  PubMed  Google Scholar 

  105. Suhre K, Shin SY, Petersen AK et al (2011) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477:54–60

    CAS  PubMed  Google Scholar 

  106. Orntoft TF, Greenwell P, Clausen H, Watkins WM (1991) Regulation of the oncodevelopmental expression of type 1 chain ABH and Lewis(b) blood group antigens in human colon by alpha-2-L-fucosylation. Gut 32:287–293

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Yazawa S, Nakamura J, Asao T et al (1993) Aberrant alpha 1– > 2fucosyltransferases found in human colorectal carcinoma involved in the accumulation of Leb and Y antigens in colorectal tumors. Jpn J Cancer Res 84:989–995

    CAS  PubMed  Google Scholar 

  108. Sun J, Thurin J, Cooper HS et al (1995) Elevated expression of H type GDP-L-fucose:beta-D-galactoside alpha-2-L-fucosyltransferase is associated with human colon adenocarcinoma progression. Proc Natl Acad Sci U S A 92:5724–5728

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Teresa DB, Santos RA, Takahashi CS et al (2010) Polymorphisms of Lewis and secretor genes are related to breast cancer and metastasis in axillary lymph nodes. Tumour Biol 31:401–409

    CAS  PubMed  Google Scholar 

  110. Kannagi R, Fukushi Y, Tachikawa T et al (1986) Quantitative and qualitative characterization of human cancer-associated serum glycoprotein antigens expressing fucosyl or sialyl-fucosyl type 2 chain polylactosamine. Cancer Res 46:2619–2626

    CAS  PubMed  Google Scholar 

  111. Narimatsu H, Iwasaki H, Nakayama F et al (1998) Lewis and secretor gene dosages affect CA19-9 and DU-PAN-2 serum levels in normal individuals and colorectal cancer patients. Cancer Res 58:512–518

    CAS  PubMed  Google Scholar 

  112. Wannhoff A, Hov JR, Folseraas T et al (2013) FUT2 and FUT3 genotype determines CA19-9 cut-off values for detection of cholangiocarcinoma in patients with primary sclerosing cholangitis. J Hepatol 59:1278–1284

    CAS  PubMed  Google Scholar 

  113. He M, Wu C, Xu J et al (2014) A genome wide association study of genetic loci that influence tumour biomarkers cancer antigen 19–9, carcinoembryonic antigen and alpha fetoprotein and their associations with cancer risk. Gut 63:143–151

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Beuers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maroni, L., van de Graaf, S.F.J., Hohenester, S.D. et al. Fucosyltransferase 2: A Genetic Risk Factor for Primary Sclerosing Cholangitis and Crohn's Disease—A Comprehensive Review. Clinic Rev Allerg Immunol 48, 182–191 (2015). https://doi.org/10.1007/s12016-014-8423-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-014-8423-1

Keywords

Navigation