Skip to main content

Advertisement

Log in

IgE, Mast Cells, and Eosinophils in Atopic Dermatitis

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin disease with specific immune and inflammatory mechanisms. Atopy is among the major features of the diagnosis criteria for AD but is not an essential feature. Thus, patients diagnosed with AD can be atopic or non-atopic. This review focuses on the role of IgE, mast cells, and eosinophils in the pathogenesis of AD. The known functions of IgE in allergic inflammation suggest that IgE and IgE-mediated mast cell and eosinophil activation contribute to AD, but direct evidence supporting this is scarce. The level of IgE (thus the degree of allergic sensitization) is associated with severity of AD and contributed by abnormality of skin barrier, a key feature of AD. The function of IgE in development of AD is supported by the beneficial effect of anti-IgE therapy in a number of clinical studies. The role of mast cells in AD is suggested by the increase in the mast cell number and mast cell activation in AD lesions and the association between mast cell activation and AD. It is further suggested by their role in mouse models of AD as well as by the effect of therapeutic agents for AD that can affect mast cells. The role of eosinophils in AD is suggested by the presence of eosinophilia in AD patients and eosinophil infiltrates in AD lesions. It is further supported by information that links AD to cytokines and chemokines associated with production, recruitment, and activation of eosinophils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hanifin JM, Rajka G (1980) Diagnostic features of atopic dermatitis. Acta Derm Venereol Suppl (Stockh) 92:44–47

    Google Scholar 

  2. Williams HC (2005) Clinical practice. Atopic dermatitis. N Engl J Med 352(22):2314–2324

    PubMed  CAS  Google Scholar 

  3. Eichenfield LF et al (2003) Consensus conference on pediatric atopic dermatitis. J Am Acad Dermatol 49(6):1088–1095

    PubMed  Google Scholar 

  4. Schafer T et al (1999) Association between severity of atopic eczema and degree of sensitization to aeroallergens in schoolchildren. J Allergy Clin Immunol 104(6):1280–1284

    PubMed  CAS  Google Scholar 

  5. Laske N, Niggemann B (2004) Does the severity of atopic dermatitis correlate with serum IgE levels? Pediatr Allergy Immunol 15(1):86–88

    PubMed  Google Scholar 

  6. Hill DJ, Hosking CS (2004) Food allergy and atopic dermatitis in infancy: an epidemiologic study. Pediatr Allergy Immunol 15(5):421–427

    PubMed  CAS  Google Scholar 

  7. Illi S et al (2004) The natural course of atopic dermatitis from birth to age 7 years and the association with asthma. J Allergy Clin Immunol 113(5):925–931

    PubMed  Google Scholar 

  8. Wang IJ et al (2004) Correlation between age and allergens in pediatric atopic dermatitis. Ann Allergy Asthma Immunol 93(4):334–338

    PubMed  Google Scholar 

  9. Johnke H et al (2006) Patterns of sensitization in infants and its relation to atopic dermatitis. Pediatr Allergy Immunol 17(8):591–600

    PubMed  Google Scholar 

  10. Eller E et al (2009) Development of atopic dermatitis in the DARC birth cohort. Pediatr Allergy Immunol 21:307–314

    PubMed  Google Scholar 

  11. Kjaer HF et al (2009) The association between early sensitization patterns and subsequent allergic disease. The DARC birth cohort study. Pediatr Allergy Immunol 20(8):726–734

    PubMed  Google Scholar 

  12. Somani VK (2008) A study of allergen-specific IgE antibodies in Indian patients of atopic dermatitis. Indian J Dermatol Venereol Leprol 74(2):100–104

    PubMed  CAS  Google Scholar 

  13. Hill DJ et al (2008) Confirmation of the association between high levels of immunoglobulin E food sensitization and eczema in infancy: an international study. Clin Exp Allergy 38(1):161–168

    PubMed  CAS  Google Scholar 

  14. Osterballe M et al (2009) The prevalence of food hypersensitivity in young adults. Pediatr Allergy Immunol 20(7):686–692

    PubMed  CAS  Google Scholar 

  15. Flohr C et al (2004) How atopic is atopic dermatitis? J Allergy Clin Immunol 114(1):150–158

    PubMed  Google Scholar 

  16. Johansson SG et al (2004) Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol 113(5):832–836

    PubMed  CAS  Google Scholar 

  17. Laske N, Bunikowski R, Niggemann B (2003) Extraordinarily high serum IgE levels and consequences for atopic phenotypes. Ann Allergy Asthma Immunol 91(2):202–204

    PubMed  Google Scholar 

  18. Wahn U et al (2008) IgE antibody responses in young children with atopic dermatitis. Pediatr Allergy Immunol 19(4):332–336

    PubMed  CAS  Google Scholar 

  19. Elias PM, Feingold KR (2001) Does the tail wag the dog? Role of the barrier in the pathogenesis of inflammatory dermatoses and therapeutic implications. Arch Dermatol 137(8):1079–1081

    PubMed  CAS  Google Scholar 

  20. O'Regan GM et al (2008) Filaggrin in atopic dermatitis. J Allergy Clin Immunol 122(4):689–693

    PubMed  Google Scholar 

  21. van den Oord RA, Sheikh A (2009) Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis. BMJ 339:b2433

    PubMed  Google Scholar 

  22. Leung DY et al (1993) Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens. J Clin Invest 92(3):1374–1380

    PubMed  CAS  Google Scholar 

  23. TADA J et al (1996) Presence of specific IgE antibodies to staphylococcal enterotoxins in patients with atopic dermatitis. Eur J Dermatol 6:552–554

    Google Scholar 

  24. Bunikowski R et al (1999) Prevalence and role of serum IgE antibodies to the Staphylococcus aureus-derived superantigens SEA and SEB in children with atopic dermatitis. J Allergy Clin Immunol 103(1 Pt 1):119–124

    PubMed  CAS  Google Scholar 

  25. Ide F et al (2004) Staphylococcal enterotoxin-specific IgE antibodies in atopic dermatitis. Pediatr Int 46(3):337–341

    PubMed  CAS  Google Scholar 

  26. Clark RA, Adinoff AD (1989) Aeroallergen contact can exacerbate atopic dermatitis: patch tests as a diagnostic tool. J Am Acad Dermatol 21(4 Pt 2):863–869

    PubMed  CAS  Google Scholar 

  27. Sanda T et al (1992) Effectiveness of house dust-mite allergen avoidance through clean room therapy in patients with atopic dermatitis. J Allergy Clin Immunol 89(3):653–657

    PubMed  CAS  Google Scholar 

  28. Tan BB et al (1996) Double-blind controlled trial of effect of housedust-mite allergen avoidance on atopic dermatitis. Lancet 347(8993):15–18

    PubMed  CAS  Google Scholar 

  29. Nolles G et al (2001) Prevalence of immunoglobulin E for fungi in atopic children. Clin Exp Allergy 31(10):1564–1570

    PubMed  CAS  Google Scholar 

  30. Wessels MW et al (1991) IgE antibodies to Pityrosporum ovale in atopic dermatitis. Br J Dermatol 125(3):227–232

    PubMed  CAS  Google Scholar 

  31. Jensen-Jarolim E et al (1992) Atopic dermatitis of the face, scalp, and neck: type I reaction to the yeast Pityrosporum ovale? J Allergy Clin Immunol 89(1 Pt 1):44–51

    PubMed  CAS  Google Scholar 

  32. Scalabrin DM et al (1999) Use of specific IgE in assessing the relevance of fungal and dust mite allergens to atopic dermatitis: a comparison with asthmatic and nonasthmatic control subjects. J Allergy Clin Immunol 104(6):1273–1279

    PubMed  CAS  Google Scholar 

  33. Arzumanyan VG et al (2003) IgE and IgG antibodies to Malassezia spp. yeast extract in patients with atopic dermatitis. Bull Exp Biol Med 135(5):460–463

    PubMed  CAS  Google Scholar 

  34. Savolainen J et al (1993) Candida albicans and atopic dermatitis. Clin Exp Allergy 23(4):332–339

    PubMed  CAS  Google Scholar 

  35. Reefer AJ et al (2007) The relevance of microbial allergens to the IgE antibody repertoire in atopic and nonatopic eczema. J Allergy Clin Immunol 120(1):156–163

    PubMed  CAS  Google Scholar 

  36. Valenta R et al (1996) Immunoglobulin E response to human proteins in atopic patients. J Invest Dermatol 107(2):203–208

    PubMed  CAS  Google Scholar 

  37. Valenta R et al (1997) Isolation of cDNAs coding for IgE autoantigens: a link between atopy and autoimmunity. Int Arch Allergy Immunol 113(1–3):209–212

    PubMed  CAS  Google Scholar 

  38. Altrichter S et al (2008) Serum IgE autoantibodies target keratinocytes in patients with atopic dermatitis. J Invest Dermatol 128(9):2232–2239

    PubMed  CAS  Google Scholar 

  39. Valenta R et al (1998) Molecular characterization of an autoallergen, Hom s 1, identified by serum IgE from atopic dermatitis patients. J Invest Dermatol 111(6):1178–1183

    PubMed  CAS  Google Scholar 

  40. Natter S et al (1998) Isolation of cDNA clones coding for IgE autoantigens with serum IgE from atopic dermatitis patients. FASEB J 12(14):1559–1569

    PubMed  CAS  Google Scholar 

  41. Valenta R et al (1991) Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science 253(5019):557–560

    PubMed  CAS  Google Scholar 

  42. Crameri R et al (1996) Humoral and cell-mediated autoimmunity in allergy to Aspergillus fumigatus. J Exp Med 184(1):265–270

    PubMed  CAS  Google Scholar 

  43. Seiberler S et al (1999) Characterization of IgE-reactive autoantigens in atopic dermatitis. 1. Subcellular distribution and tissue-specific expression. Int Arch Allergy Immunol 120(2):108–116

    PubMed  CAS  Google Scholar 

  44. Novak N, Bieber T, Kraft S (2004) Immunoglobulin E-bearing antigen-presenting cells in atopic dermatitis. Curr Allergy Asthma Rep 4(4):263–269

    PubMed  Google Scholar 

  45. Kolmer HL et al (1996) Effect of combined antibacterial and antifungal treatment in severe atopic dermatitis. J Allergy Clin Immunol 98(3):702–707

    PubMed  CAS  Google Scholar 

  46. Spergel JM et al (1999) Roles of TH1 and TH2 cytokines in a murine model of allergic dermatitis. J Clin Invest 103(8):1103–1111

    PubMed  CAS  Google Scholar 

  47. MacGlashan DW Jr et al (1997) Down-regulation of Fc(epsilon)RI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J Immunol 158(3):1438–1445

    PubMed  CAS  Google Scholar 

  48. Beck LA et al (2004) Omalizumab-induced reductions in mast cell Fce psilon RI expression and function. J Allergy Clin Immunol 114(3):527–530

    PubMed  CAS  Google Scholar 

  49. Krathen RA, Hsu S (2005) Failure of omalizumab for treatment of severe adult atopic dermatitis. J Am Acad Dermatol 53(2):338–340

    PubMed  Google Scholar 

  50. Beck LA, Saini S (2006) Wanted: a study with omalizumab to determine the role of IgE-mediated pathways in atopic dermatitis. J Am Acad Dermatol 55(3):540–541, author reply 541–2

    PubMed  Google Scholar 

  51. Lane JE et al (2006) Treatment of recalcitrant atopic dermatitis with omalizumab. J Am Acad Dermatol 54(1):68–72

    PubMed  Google Scholar 

  52. Vigo PG et al (2006) Efficacy of anti-IgE therapy in patients with atopic dermatitis. J Am Acad Dermatol 55(1):168–170

    PubMed  Google Scholar 

  53. Belloni B et al (2007) Low-dose anti-IgE therapy in patients with atopic eczema with high serum IgE levels. J Allergy Clin Immunol 120(5):1223–1225

    PubMed  CAS  Google Scholar 

  54. Forman SB, Garrett AB (2007) Success of omalizumab as monotherapy in adult atopic dermatitis: case report and discussion of the high-affinity immunoglobulin E receptor, FcepsilonRI. Cutis 80(1):38–40

    PubMed  Google Scholar 

  55. Incorvaia C et al (2008) Effectiveness of omalizumab in a patient with severe asthma and atopic dermatitis. Monaldi Arch Chest Dis 69(2):78–80

    PubMed  CAS  Google Scholar 

  56. Sheinkopf LE et al (2008) Efficacy of omalizumab in the treatment of atopic dermatitis: a pilot study. Allergy Asthma Proc 29(5):530–537

    PubMed  CAS  Google Scholar 

  57. Walsh LJ et al (1991) Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proc Natl Acad Sci USA 88(10):4220–4224

    PubMed  CAS  Google Scholar 

  58. Schleimer RP et al (1992) IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J Immunol 148(4):1086–1092

    PubMed  CAS  Google Scholar 

  59. Sironi M et al (1994) Regulation of endothelial and mesothelial cell function by interleukin-13: selective induction of vascular cell adhesion molecule-1 and amplification of interleukin-6 production. Blood 84(6):1913–1921

    PubMed  CAS  Google Scholar 

  60. Nakae S et al (2006) Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J Immunol 176(4):2238–2248

    PubMed  CAS  Google Scholar 

  61. Nakae S et al (2005) Mast cells enhance T cell activation: importance of mast cell-derived TNF. Proc Natl Acad Sci USA 102(18):6467–6472

    PubMed  CAS  Google Scholar 

  62. Mekori YA, Metcalfe DD (1999) Mast cell–T cell interactions. J Allergy Clin Immunol 104(3 Pt 1):517–523

    PubMed  CAS  Google Scholar 

  63. Tkaczyk C et al (1996) Mouse bone marrow-derived mast cells and mast cell lines constitutively produce B cell growth and differentiation activities. J Immunol 157(4):1720–1728

    PubMed  CAS  Google Scholar 

  64. Pawankar R et al (1997) Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J Clin Invest 99(7):1492–1499

    PubMed  CAS  Google Scholar 

  65. Gauchat JF et al (1993) Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365(6444):340–343

    PubMed  CAS  Google Scholar 

  66. Kohda F et al (2002) Histamine-induced IL-6 and IL-8 production are differentially modulated by IFN-gamma and IL-4 in human keratinocytes. J Dermatol Sci 28(1):34–41

    PubMed  CAS  Google Scholar 

  67. Kanda N, Watanabe S (2004) Histamine enhances the production of granulocyte-macrophage colony-stimulating factor via protein kinase C alpha and extracellular signal-regulated kinase in human keratinocytes. J Invest Dermatol 122(4):863–872

    PubMed  CAS  Google Scholar 

  68. Ioffreda MD, Whitaker D, Murphy GF (1993) Mast cell degranulation upregulates alpha 6 integrins on epidermal Langerhans cells. J Invest Dermatol 101(2):150–154

    PubMed  CAS  Google Scholar 

  69. Jawdat DM et al (2004) IgE-mediated mast cell activation induces Langerhans cell migration in vivo. J Immunol 173(8):5275–5282

    PubMed  CAS  Google Scholar 

  70. Suto H et al (2006) Mast cell-associated TNF promotes dendritic cell migration. J Immunol 176(7):4102–4112

    PubMed  CAS  Google Scholar 

  71. Mazzoni A et al (2006) Dendritic cell modulation by mast cells controls the Th1/Th2 balance in responding T cells. J Immunol 177(6):3577–3581

    PubMed  CAS  Google Scholar 

  72. Theiner G, Gessner A, Lutz MB (2006) The mast cell mediator PGD2 suppresses IL-12 release by dendritic cells leading to Th2 polarized immune responses in vivo. Immunobiology 211(6–8):463–472

    PubMed  CAS  Google Scholar 

  73. Frandji P et al (1993) Antigen-dependent stimulation by bone marrow-derived mast cells of MHC class II-restricted T cell hybridoma. J Immunol 151(11):6318–6328

    PubMed  CAS  Google Scholar 

  74. Fox CC, Jewell SD, Whitacre CC (1994) Rat peritoneal mast cells present antigen to a PPD-specific T cell line. Cell Immunol 158(1):253–264

    PubMed  CAS  Google Scholar 

  75. Frandji P et al (1995) Presentation of soluble antigens by mast cells: upregulation by interleukin-4 and granulocyte/macrophage colony-stimulating factor and downregulation by interferon-gamma. Cell Immunol 163(1):37–46

    PubMed  CAS  Google Scholar 

  76. Frandji P et al (1996) Exogenous and endogenous antigens are differentially presented by mast cells to CD4+ T lymphocytes. Eur J Immunol 26(10):2517–2528

    PubMed  CAS  Google Scholar 

  77. Malaviya R et al (1996) Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. J Immunol 156(4):1490–1496

    PubMed  CAS  Google Scholar 

  78. Soter NA (1989) Morphology of atopic eczema. Allergy 44(Suppl 9):16–19

    PubMed  Google Scholar 

  79. Irani AM, Sampson HA, Schwartz LB (1989) Mast cells in atopic dermatitis. Allergy 44(Suppl 9):31–34

    PubMed  Google Scholar 

  80. Groneberg DA et al (2005) Mast cells and vasculature in atopic dermatitis—potential stimulus of neoangiogenesis. Allergy 60(1):90–97

    PubMed  CAS  Google Scholar 

  81. Cox HE et al (1998) Association of atopic dermatitis to the beta subunit of the high affinity immunoglobulin E receptor. Br J Dermatol 138(1):182–187

    PubMed  CAS  Google Scholar 

  82. Mao XQ et al (1996) Association between genetic variants of mast-cell chymase and eczema. Lancet 348(9027):581–583

    PubMed  CAS  Google Scholar 

  83. Badertscher K et al (2005) Mast cell chymase is increased in chronic atopic dermatitis but not in psoriasis. Arch Dermatol Res 296(10):503–506

    PubMed  CAS  Google Scholar 

  84. Zhao L et al (2006) A rodent model for allergic dermatitis induced by flea antigens. Vet Immunol Immunopathol 114(3–4):285–296

    PubMed  CAS  Google Scholar 

  85. Kanbe T et al (2001) Serum levels of soluble stem cell factor and soluble KIT are elevated in patients with atopic dermatitis and correlate with the disease severity. Br J Dermatol 144(6):1148–1153

    PubMed  CAS  Google Scholar 

  86. Ring J, Thomas P (1989) Histamine and atopic eczema. Acta Derm Venereol Suppl Stockh 144:70–77

    PubMed  CAS  Google Scholar 

  87. Hamid Q et al (1996) In vivo expression of IL-12 and IL-13 in atopic dermatitis. J Allergy Clin Immunol 98(1):225–231

    PubMed  CAS  Google Scholar 

  88. Hamid Q, Boguniewicz M, Leung DY (1994) Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest 94(2):870–876

    PubMed  CAS  Google Scholar 

  89. Horsmanheimo L et al (1994) Mast cells are one major source of interleukin-4 in atopic dermatitis. Br J Dermatol 131(3):348–353

    PubMed  CAS  Google Scholar 

  90. Steinhoff M et al (2003) Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci 23(15):6176–6180

    PubMed  CAS  Google Scholar 

  91. Gombert M et al (2005) CCL1-CCR8 interactions: an axis mediating the recruitment of T cells and Langerhans-type dendritic cells to sites of atopic skin inflammation. J Immunol 174(8):5082–5091

    PubMed  CAS  Google Scholar 

  92. Groneberg DA et al (2003) Down-regulation of vasoactive intestinal polypeptide receptor expression in atopic dermatitis. J Allergy Clin Immunol 111(5):1099–1105

    PubMed  CAS  Google Scholar 

  93. Lewis RA, Austen KF (1981) Mediation of local homeostasis and inflammation by leukotrienes and other mast cell-dependent compounds. Nature 293(5828):103–108

    PubMed  CAS  Google Scholar 

  94. Fischer M et al (2006) Mast cell CD30 ligand is upregulated in cutaneous inflammation and mediates degranulation-independent chemokine secretion. J Clin Investig 116(10):2748–2756

    PubMed  CAS  Google Scholar 

  95. Kawakami T et al (2009) Mast cells in atopic dermatitis. Curr Opin Immunol 21:666–678

    PubMed  CAS  Google Scholar 

  96. Chan LS, Robinson N, Xu LT (2001) Expression of interleukin-4 in the epidermis of transgenic mice results in a pruritic inflammatory skin disease: an experimental animal model to study atopic dermatitis. J Investig Dermatol 117(4):977–983

    PubMed  CAS  Google Scholar 

  97. Zheng T et al (2009) Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling. J Invest Dermatol 129(3):742–751

    PubMed  CAS  Google Scholar 

  98. Morioka T et al (2009) IL-4/IL-13 antagonist DNA vaccination successfully suppresses Th2 type chronic dermatitis. Br J Dermatol 160(6):1172–1179

    PubMed  CAS  Google Scholar 

  99. Tam SY et al (2004) RabGEF1 is a negative regulator of mast cell activation and skin inflammation. Nat Immunol 5(8):844–852

    PubMed  CAS  Google Scholar 

  100. Alenius H et al (2002) Mast cells regulate IFN-gamma expression in the skin and circulating IgE levels in allergen-induced skin inflammation. J Allergy Clin Immunol 109(1):106–113

    PubMed  CAS  Google Scholar 

  101. Matsuda H et al (1997) Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Int Immunol 9(3):461–466

    PubMed  CAS  Google Scholar 

  102. Matsuoka H et al (2003) A mouse model of the atopic eczema/dermatitis syndrome by repeated application of a crude extract of house-dust mite Dermatophagoides farinae. Allergy 58(2):139–145

    PubMed  CAS  Google Scholar 

  103. Terada M et al (2006) Contribution of IL-18 to atopic-dermatitis-like skin inflammation induced by Staphylococcus aureus product in mice. Proc Natl Acad Sci USA 103(23):8816–8821

    PubMed  CAS  Google Scholar 

  104. Terakawa M et al (2008) Oral chymase inhibitor SUN13834 ameliorates skin inflammation as well as pruritus in mouse model for atopic dermatitis. Eur J Pharmacol 601(1–3):186–191

    PubMed  CAS  Google Scholar 

  105. Watanabe N et al (2002) Chymase inhibitor improves dermatitis in NC/Nga mice. Int Arch Allergy Immunol 128(3):229–234

    PubMed  CAS  Google Scholar 

  106. Kim Y et al (2008) Hyaluronic acid targets CD44 and inhibits FcepsilonRI signaling involving PKCdelta, Rac1, ROS, and MAPK to exert anti-allergic effect. Mol Immunol 45(9):2537–2547

    PubMed  CAS  Google Scholar 

  107. Schleimer RP et al (1983) Effects of dexamethasone on mediator release from human lung fragments and purified human lung mast cells. J Clin Invest 71(6):1830–1835

    PubMed  CAS  Google Scholar 

  108. Smith SJ et al (2002) Dexamethasone inhibits maturation, cytokine production and Fc epsilon RI expression of human cord blood-derived mast cells. Clin Exp Allergy 32(6):906–913

    PubMed  CAS  Google Scholar 

  109. Kato A et al (2009) Dexamethasone and FK506 inhibit expression of distinct subsets of chemokines in human mast cells. J Immunol 182(11):7233–7243

    PubMed  CAS  Google Scholar 

  110. Gisondi P, Ellis CN, Girolomoni G (2005) Pimecrolimus in dermatology: atopic dermatitis and beyond. Int J Clin Pract 59(8):969–974

    PubMed  CAS  Google Scholar 

  111. Sardy M, Ruzicka T, Kuhn A (2009) Topical calcineurin inhibitors in cutaneous lupus erythematosus. Arch Dermatol Res 301(1):93–98

    PubMed  CAS  Google Scholar 

  112. Simon D et al (2004) Reduced dermal infiltration of cytokineexpressing inflammatory cells in atopic dermatitis after short-term topical tacrolimus treatment. J Allergy Clin Immunol 114(4):887–895

    PubMed  CAS  Google Scholar 

  113. Denburg JA et al (1985) Heterogeneity of human peripheral blood eosinophil-type colonies: evidence for a common basophil-eosinophil progenitor. Blood 66(2):312–318

    PubMed  CAS  Google Scholar 

  114. Young B (2006) Wheater’s functional histology: a text and colour atlas, 5th edn. Churchill Livingstone/Elsevier, Edinburgh, p 437

    Google Scholar 

  115. Leiferman KM (1991) A current perspective on the role of eosinophils in dermatologic diseases. J Am Acad Dermatol 24(6 Pt 2):1101–1112

    PubMed  CAS  Google Scholar 

  116. Zheutlin LM et al (1984) Stimulation of basophil and rat mast cell histamine release by eosinophil granule-derived cationic proteins. J Immunol 133(4):2180–2185

    PubMed  CAS  Google Scholar 

  117. Moy JN, Gleich GJ, Thomas LL (1990) Noncytotoxic activation of neutrophils by eosinophil granule major basic protein. Effect on superoxide anion generation and lysosomal enzyme release. J Immunol 145(8):2626–2632

    PubMed  CAS  Google Scholar 

  118. Rohrbach MS et al (1990) Activation of platelets by eosinophil granule proteins. J Exp Med 172(4):1271–1274

    PubMed  CAS  Google Scholar 

  119. Kita H et al (1995) Eosinophil major basic protein induces degranulation and IL-8 production by human eosinophils. J Immunol 154(9):4749–4758

    PubMed  CAS  Google Scholar 

  120. Kato M et al (1998) Eosinophil infiltration and degranulation in normal human tissue. Anat Rec 252(3):418–425

    PubMed  CAS  Google Scholar 

  121. Kagi MK, Joller-Jemelka H, Wuthrich B (1992) Correlation of eosinophils, eosinophil cationic protein and soluble interleukin-2 receptor with the clinical activity of atopic dermatitis. Dermatology 185(2):88–92

    PubMed  CAS  Google Scholar 

  122. Uehara M, Izukura R, Sawai T (1990) Blood eosinophilia in atopic dermatitis. Clin Exp Dermatol 15(4):264–266

    PubMed  CAS  Google Scholar 

  123. Nishimoto M et al (1998) Peripheral eosinophil counts relates the improvement of the skin lesions of atopic dermatitis patients more sensitive than serum eosinophil cationic protein levels. Arerugi 47(6):591–596

    PubMed  CAS  Google Scholar 

  124. Borres MP, Bjorksten B (2004) Peripheral blood eosinophils and IL-4 in infancy in relation to the appearance of allergic disease during the first 6 years of life. Pediatr Allergy Immunol 15(3):216–220

    PubMed  CAS  Google Scholar 

  125. Leiferman KM et al (1985) Dermal deposition of eosinophil-granule major basic protein in atopic dermatitis. Comparison with onchocerciasis. N Engl J Med 313(5):282–285

    PubMed  CAS  Google Scholar 

  126. Leiferman KM (2001) A role for eosinophils in atopic dermatitis. J Am Acad Dermatol 45(1 Suppl):S21–S24

    PubMed  CAS  Google Scholar 

  127. Pucci N et al (2000) Urinary eosinophil protein X and serum eosinophil cationic protein in infants and young children with atopic dermatitis: correlation with disease activity. J Allergy Clin Immunol 105(2 Pt 1):353–357

    PubMed  CAS  Google Scholar 

  128. Breuer K, Kapp A, Werfel T (2001) Urine eosinophil protein X (EPX) is an in vitro parameter of inflammation in atopic dermatitis of the adult age. Allergy 56(8):780–784

    PubMed  CAS  Google Scholar 

  129. Goto T et al (2007) Urinary eosinophil-derived neurotoxin concentrations in patients with atopic dermatitis: a useful clinical marker for disease activity. Allergol Int 56(4):433–438

    PubMed  CAS  Google Scholar 

  130. Czech W et al (1992) Serum eosinophil cationic protein (ECP) is a sensitive measure for disease activity in atopic dermatitis. Br J Dermatol 126(4):351–355

    PubMed  CAS  Google Scholar 

  131. Wassom DL et al (1981) Elevated serum levels of the eosinophil granule major basic protein in patients with eosinophilia. J Clin Invest 67(3):651–661

    PubMed  CAS  Google Scholar 

  132. Taniuchi S et al (2001) Serum eosinophil derived neurotoxin may reflect more strongly disease severity in childhood atopic dermatitis than eosinophil cationic protein. J Dermatol Sci 26(1):79–82

    PubMed  CAS  Google Scholar 

  133. Oymar K, Bjerknes R (2000) Urinary eosinophil protein X in children with atopic dermatitis: relation to atopy and disease activity. Allergy 55(10):964–968

    PubMed  CAS  Google Scholar 

  134. Halmerbauer G, Frischer T, Koller DY (1997) Monitoring of disease activity by measurement of inflammatory markers in atopic dermatitis in childhood. Allergy 52(7):765–769

    PubMed  CAS  Google Scholar 

  135. Caproni M et al (1996) Modulation of serum eosinophil cationic protein levels by cyclosporin in severe atopic dermatitis. Br J Dermatol 135(2):336–337

    PubMed  CAS  Google Scholar 

  136. Bradding P et al (1994) Interleukin-4, −5, and −6 and tumor necrosis factor-alpha in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. Am J Respir Cell Mol Biol 10(5):471–480

    PubMed  CAS  Google Scholar 

  137. Nishinakamura R et al (1996) Hematopoiesis in mice lacking the entire granulocyte-macrophage colony-stimulating factor/interleukin-3/interleukin-5 functions. Blood 88(7):2458–2464

    PubMed  CAS  Google Scholar 

  138. Simon D, Braathen LR, Simon HU (2004) Eosinophils and atopic dermatitis. Allergy 59(6):561–570

    PubMed  CAS  Google Scholar 

  139. Yamaguchi Y et al (1988) Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor. J Exp Med 167(5):1737–1742

    PubMed  CAS  Google Scholar 

  140. Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:147–174

    PubMed  CAS  Google Scholar 

  141. Yamamoto N et al (2003) Heterogeneity of interleukin 5 genetic background in atopic dermatitis patients: significant difference between those with blood eosinophilia and normal eosinophil levels. J Dermatol Sci 33(2):121–126

    PubMed  CAS  Google Scholar 

  142. Amerio P et al (2003) Eotaxins and CCR3 receptor in inflammatory and allergic skin diseases: therapeutical implications. Curr Drug Targets Inflamm Allergy 2(1):81–94

    PubMed  CAS  Google Scholar 

  143. Nonaka M et al (2004) Induction of eotaxin production by interleukin-4, interleukin-13 and lipopolysaccharide by nasal fibroblasts. Clin Exp Allergy 34(5):804–811

    PubMed  CAS  Google Scholar 

  144. Teixeira MM et al (1997) Chemokine-induced eosinophil recruitment. Evidence of a role for endogenous eotaxin in an in vivo allergy model in mouse skin. J Clin Invest 100(7):1657–1666

    PubMed  CAS  Google Scholar 

  145. Chihara J (1998) The role of chemokines such as RANTES in allergic disease. Rinsho Byori 46(8):816–820

    PubMed  CAS  Google Scholar 

  146. Oyamada H et al (2006) RANTES production from mononuclear cells in response to the specific allergen in asthma patients. Allergol Int 55(3):253–259

    PubMed  CAS  Google Scholar 

  147. Masuda K et al (2003) Increased levels of serum interleukin-16 in adult type atopic dermatitis. Acta Derm Venereol 83(4):249–253

    PubMed  CAS  Google Scholar 

  148. Grewe M et al (1998) Human eosinophils produce biologically active IL-12: implications for control of T cell responses. J Immunol 161(1):415–420

    PubMed  CAS  Google Scholar 

  149. Kang K, Stevens SR (2003) Pathophysiology of atopic dermatitis. Clin Dermatol 21(2):116–121

    PubMed  Google Scholar 

  150. Elovic A et al (1994) Expression of transforming growth factors-alpha and beta 1 messenger RNA and product by eosinophils in nasal polyps. J Allergy Clin Immunol 93(5):864–869

    PubMed  CAS  Google Scholar 

  151. Phipps S et al (2002) The relationship between allergen-induced tissue eosinophilia and markers of repair and remodeling in human atopic skin. J Immunol 169(8):4604–4612

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Tong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, FT., Goodarzi, H. & Chen, HY. IgE, Mast Cells, and Eosinophils in Atopic Dermatitis. Clinic Rev Allerg Immunol 41, 298–310 (2011). https://doi.org/10.1007/s12016-011-8252-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-011-8252-4

Keywords

Navigation