Skip to main content

Advertisement

Log in

Immunomodulation in Stem Cell Differentiation into Neurons and Brain Repair

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Immunomodulators regulate stem cell activity at all stages of development as well as during adulthood. Embryonic stem cell (ESC) proliferation as well as neurogenic processes during embryonic development are controlled by factors of the immune system. We review here immunophenotypic expression patterns of  different stem cell types, including ESC, neural (NSC) and tissue-specific mesenchymal stem cells (MSC), and focus on immunodulatory properties of these cells. Immune and inflammatory responses, involving actions of cytokines as well as toll-like receptor (TLR) signaling are known to affect the differentiation capacity of NSC and MSC. Secretion of pro- and anti-inflammatory messengers by MSC have been observed as the consequence of TLR and cytokine activation and promotion of differentiation into specified phenotypes. As result of augmented differentiation capacity, stem cells secrete angiogenic factors including vascular endothelial growth factor, resulting in multifactorial actions in tissue repair. Immunoregulatory properties of tissue specific adult stem cells are put into the context of possible clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ESC:

Embryonic stem cells

HSC:

Hematopoietic stem cells

MSC:

Mesenchymal stem cells

NPC:

Neural progenitor cells

NSC:

Neural stem cells

References

  1. Nery, A. A., Nascimento, I. C., Glaser, T., Bassaneze, V., Krieger, J. E., & Ulrich, H. (2013). Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications. Cytometry. Part A, 83, 48–61.

    Google Scholar 

  2. Ardeshiry Lajimi, A., Hagh, M. F., Saki, N., Mortaz, E., Soleimani, M., & Rahim, F. (2013). Feasibility of cell therapy in multiple sclerosis: a systematic review of 83 studies. International Journal of Hematology-Oncology and Stem Cell Research, 7, 15–33.

    PubMed Central  PubMed  Google Scholar 

  3. Fibbe, W. E. (2002). Mesenchymal stem cells. A potential source for skeletal repair. Annals of the Rheumatic Diseases, 6, ii29–ii31.

    Google Scholar 

  4. Lo, K. C., Chuang, W. W., & Lamb, D. J. (2003). Stem cell research: the facts, the myths and the promises. The Journal of Urology, 170, 2453–2458.

    PubMed  Google Scholar 

  5. Aoshima, K., Baba, A., Makino, Y., & Okada, Y. (2013). Establishment of alternative culture method for spermatogonial stem cells using knockout serum replacement. PLoS One, 8, e77715.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    CAS  PubMed  Google Scholar 

  7. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 18, 399–404.

    CAS  PubMed  Google Scholar 

  8. Chen, L., & Daley, G. Q. (2008). Molecular basis of pluripotency. Human Molecular Genetics, 17, R23–R27.

    CAS  PubMed  Google Scholar 

  9. Rogers, M. B., Hosler, B. A., & Gudas, L. J. (1991). Specific expression of a retinoic acid-regulated, zinc-finger gene, Rex-1, in preimplantation embryos, trophoblast and spermatocytes. Development, 113, 815–824.

    CAS  PubMed  Google Scholar 

  10. Shi, W., Wang, H., Pan, G., Geng, Y., Guo, Y., & Pei, D. (2006). Regulation of the pluripotency marker Rex-1 by Nanog and Sox2. The Journal of Biological Chemistry, 281, 23319–23325.

    CAS  PubMed  Google Scholar 

  11. Guallar, D., Pérez-Palacios, R., Climent, M., Martínez-Abadía, I., Larraga, A., Fernández-Juan, M., et al. (2012). Expression of endogenous retroviruses is negatively regulated by the pluripotency marker Rex1/Zfp42. Nucleic Acids Research, 40, 8993–9007.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Tondeur, S., Assou, S., Nadal, L., Hamamah, S., & De Vos, J. (2008). Biology and potential of human embryonic stem cells. Annales de Biologie Clinique, 66, 241–247.

    CAS  PubMed  Google Scholar 

  13. Arduini, B. L., & Brivanlou, A. H. (2012). Modulation of FOXD3 activity in human embryonic stem cells directs pluripotency and paraxial mesoderm fates. Stem Cells, 30, 2188–2198.

    CAS  PubMed  Google Scholar 

  14. Zhang, X., Rielland, M., Yalcin, S., & Ghaffari, S. (2011). Regulation and function of FoxO transcription factors in normal and cancer stem cells: what have we learned? Current Drug Targets, 12, 1267–1283.

    CAS  PubMed  Google Scholar 

  15. Draper, J. S., Pigott, C., Thomson, J. A., & Andrews, P. W. (2002). Surface antigens of human embryonic stem cells: changes upon differentiation in culture. Journal of Anatomy, 200, 249–258.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Guest, D. J., & Allen, W. R. (2007). Expression of cell-surface antigens and embryonic stem cell pluripotency genes in equine blastocysts. Stem Cells and Development, 16, 789–796.

    CAS  PubMed  Google Scholar 

  17. Rao, R. R., Johnson, A. V., & Stice, S. L. (2007). Cell surface markers in human embryonic stem cells. Methods in Molecular Biology, 407, 51–61.

    CAS  PubMed  Google Scholar 

  18. Nagano, K., Yoshida, Y., & Isobe, T. (2008). Cell surface biomarkers of embryonic stem cells. Proteomics, 8, 4025–4035.

    CAS  PubMed  Google Scholar 

  19. Li, L., Bennett, S. A., & Wang, L. (2012). Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adhesion & Migration, 6, 59–70.

    Google Scholar 

  20. Zhao, W., Ji, X., Zhang, F., Li, L., & Ma, L. (2012). Embryonic stem cell markers. Molecules, 17, 6196–6236.

    CAS  PubMed  Google Scholar 

  21. O’Connor, M. D., Kardel, M. D., Iosfina, I., Youssef, D., Lu, M., Li, M. M., et al. (2008). Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells, 26, 1109–1116.

    PubMed  Google Scholar 

  22. Hoffmeyer, K., Raggioli, A., Rudloff, S., Anton, R., Hierholzer, A., Del Valle, I., et al. (2012). Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science, 336, 1549–1554.

    CAS  PubMed  Google Scholar 

  23. Simerman, A. A., Perone, M. J., Gimeno, M. L., Dumesic, D. A., & Chazenbalk, G. D. (2014). A mystery unraveled: nontumorigenic pluripotent stem cells in human adult tissues. Expert Opinion on Biological Therapy, 14, 917–929.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Kucia, M. J., Wysoczynski, M., Wu, W., Zuba-Surma, E. K., Ratajczak, J., & Ratajczak, M. Z. (2008). Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells, 26, 2083–2092.

    CAS  PubMed  Google Scholar 

  25. Ratajczak, M. Z., Zuba-Surma, E. K., Shin, D. M., Ratajczak, J., & Kucia, M. (2008). Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Experimental Gerontology, 43, 1009–1017.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. De Coppi, P., Bartsch, G., Jr., Siddiqui, M. M., Xu, T., Santos, C. C., Perin, L., et al. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 25, 100–106.

    PubMed  Google Scholar 

  27. Pappa, K. I., & Anagnou, N. P. (2009). Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regenerative Medicine, 4, 423–433.

    PubMed  Google Scholar 

  28. Nichols, J., & Smith, A. (2009). Naive and primed pluripotent states. Cell Stem Cell, 4, 487–492.

    CAS  PubMed  Google Scholar 

  29. Obokata, H., Wakayama, T., Sasai, Y., Kojima, K., Vacanti, M. P., Niwa, H., et al. (2014). Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature, 505, 641–647.

    CAS  PubMed  Google Scholar 

  30. Keller, R. (2005). Cell migration during gastrulation. Current Opinion in Cell Biology, 17, 533–541.

    CAS  PubMed  Google Scholar 

  31. Sumi, T., Tsuneyoshi, N., Nakatsuji, N., & Suemori, H. (2008). Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development, 135, 2969–2979.

    CAS  PubMed  Google Scholar 

  32. Gadue, P., Huber, T. L., Nostro, M. C., Kattman, S., & Keller, G. M. (2005). Germ layer induction from embryonic stem cells. Experimental Hematology, 33, 955–964.

    CAS  PubMed  Google Scholar 

  33. Williams, M., Burdsal, C., Periasamy, A., Lewandoski, M., & Sutherland, A. (2012). Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 241, 270–283.

    Google Scholar 

  34. Thomson, M., Liu, S. J., Zou, L. N., Smith, Z., Meissner, A., & Ramanathan, S. (2011). Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell, 145, 875–889.

    CAS  PubMed  Google Scholar 

  35. Hatano, S. Y., Tada, M., Kimura, H., Yamaguchi, S., Kono, T., Nakano, T., et al. (2005). Pluripotential competence of cells associated with Nanog activity. Mechanisms of Development, 122, 67–79.

    CAS  PubMed  Google Scholar 

  36. Kanai-Azuma, M., Kanai, Y., Gad, J. M., Tajima, Y., Taya, C., Kurohmaru, M., et al. (2002). Depletion of definitive gut endoderm in Sox17-null mutant mice. Development, 129, 2367–2379.

    CAS  PubMed  Google Scholar 

  37. Kim, P. T., & Ong, C. J. (2012). Differentiation of definitive endoderm from mouse embryonic stem cells. Results and Problems in Cell Differentiation, 55, 303–319.

    CAS  PubMed  Google Scholar 

  38. Suter, D. M., Tirefort, D., Julien, S., & Krause, K. H. (2009). A Sox1 to Pax6 switch drives neuroectoderm to radial glia progression during differentiation of mouse embryonic stem cells. Stem Cells, 27, 49–58.

    CAS  PubMed  Google Scholar 

  39. Evseenko, D., Zhu, Y., Schenke-Layland, K., Kuo, J., Latour, B., Ge, S., et al. (2010). Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107, 13742–13747.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Brignier, A. C., & Gewirtz, A. M. (2010). Embryonic and adult stem cell therapy. The Journal of Allergy and Clinical Immunology, 125, S336–S344.

    PubMed  Google Scholar 

  41. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    CAS  PubMed  Google Scholar 

  42. Beltrão-Braga, P. C., Pignatari, G. C., Russo, F. B., Fernandes, I. R., & Muotri, A. R. (2013). In-a-dish: induced pluripotent stem cells as a novel model for human diseases. Cytometry. Part A, 83, 11–17.

    Google Scholar 

  43. Tárnok, A., Ulrich, H., & Bocsi, J. (2010). Phenotypes of stem cells from diverse origin. Cytometry. Part A, 77, 6–10.

    Google Scholar 

  44. Zimmerlin, L., Donnenberg, V. S., Rubin, J. P., & Donnenberg, A. D. (2013). Mesenchymal markers on human adipose stem/progenitor cells. Cytometry. Part A, 83, 134–140.

    Google Scholar 

  45. Han, B., Li, J., Li, Z., Guo, L., Wang, S., Liu, P., & Wu, Y. (2013). Trichostatin A stabilizes the expression of pluripotent genes in human mesenchymal stem cells during ex vivo expansion. PLoS One, 8, e81781.

    PubMed Central  PubMed  Google Scholar 

  46. Mundra, V., Gerling, I. C., & Mahato, R. I. (2013). Mesenchymal stem cell-based therapy. Molecular Pharmaceutics, 10, 77–89.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Pierelli, L., Scambia, G., Fattorossi, A., Bonanno, G., Battaglia, A., Rumi, C., et al. (1998). Functional, phenotypic and molecular characterization of cytokine low-responding circulating CD34+ haemopoietic progenitors. British Journal of Haematology, 102, 1139–1150.

    CAS  PubMed  Google Scholar 

  48. Mayle, A., Luo, M., Jeong, M., & Goodell, M. A. (2013). Flow cytometry analysis of murine hematopoietic stem cells. Cytometry. Part A, 83, 27–37.

    Google Scholar 

  49. Bottai, D., Fiocco, R., Gelain, F., Defilippis, L., Galli, R., Gritti, A., & Vescovi, L. A. (2003). Neural stem cells in the adult nervous system. Journal of Hematotherapy & Stem Cell Research, 12, 655–670.

    Google Scholar 

  50. Oliveira, S. L., Pillat, M. M., Cheffer, A., Lameu, C., Schwindt, T. T., & Ulrich, H. (2013). Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry. Part A, 83, 76–89.

    Google Scholar 

  51. Hemmati, H. D., Nakano, I., Lazareff, J. A., Masterman-Smith, M., Geschwind, D. H., Bronner-Fraser, M., & Kornblum, H. I. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 100, 15178–15183.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Nakatani, Y., Yanagisawa, M., Suzuki, Y., & Yu, R. K. (2010). Characterization of GD3 ganglioside as a novel biomarker of mouse neural stem cells. Glycobiology, 20, 78–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Li, H., Jin, G., Qin, J., Tian, M., Shi, J., Yang, W., et al. (2011). Characterization and identification of Sox2+ radial glia cells derived from rat embryonic cerebral cortex. Histochemistry and Cell Biology, 136, 515–526.

    CAS  PubMed  Google Scholar 

  54. Sordi, V., & Piemonti, L. (2011). Therapeutic plasticity of stem cells and allograft tolerance. Cytotherapy, 13, 647–660.

    PubMed  Google Scholar 

  55. Martino, G., & Pluchino, S. (2006). The therapeutic potential of neural stem cells. Nature Reviews. Neuroscience, 7, 395–406.

    CAS  PubMed  Google Scholar 

  56. Moonen, J. R., Harmsen, M. C., & Krenning, G. (2012). Cellular plasticity: the good, the bad, and the ugly? Microenvironmental influences on progenitor cell therapy. Canadian Journal of Physiology and Pharmacology, 90, 275–285.

    CAS  PubMed  Google Scholar 

  57. Emborg, M. E., Zhang, Z., Joers, V., Brunner, K., Bondarenko, V., Ohshima, S., & Zhang, S. C. (2013). Intracerebral transplantation of differentiated human embryonic stem cells to hemiparkinsonian monkeys. Cell Transplantation, 22, 83831–83838.

    Google Scholar 

  58. Aikawa, H., Tamai, M., Mitamura, K., Itmainati, F., Barber, G. N., & Tagawa, Y. I. (2014). Innate immunity in an in vitro murine blastocyst model using embryonic and trophoblast stem cells. Journal of Bioscience and Bioengineering, 117, 358–365.

    CAS  PubMed  Google Scholar 

  59. Bilbo, S. D., & Schwarz, J. M. (2012). The immune system and developmental programming of brain and behavior. Frontiers in Neuroendocrinology, 33, 267–286.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Trujillo, C. A., Schwindt, T. T., Martins, A. H., Alves, J. M., Mello, L. E., & Ulrich, H. (2009). Novel perspectives of neural stem cell differentiation: from neurotransmitters to therapeutics. Cytometry. Part A, 75, 38–53.

    Google Scholar 

  61. Guillemot, F. (2007). Cell fate specification in the mammalian telencephalon. Progress in Neurobiology, 83, 37–52.

    CAS  PubMed  Google Scholar 

  62. Kriegstein, A., & Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annual Review of Neuroscience, 32, 149–184.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Marthiens, V., Kazanis, I., Moss, L., Long, K., & Ffrench-Constant, C. (2010). Adhesion molecules in the stem cell niche–more than just staying in shape? Journal of Cell Science, 123, 1613–1622.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Wang, C. C., Wu, C. H., Shieh, J. Y., & Wen, C. Y. (2002). Microglial distribution and apoptosis in fetal rat brain. Brain Research. Developmental Brain Research, 139, 337–342.

    CAS  PubMed  Google Scholar 

  65. Cunningham, C. L., Martínez-Cerdeño, V., & Noctor, S. C. (2013). Microglia regulate the number of neural precursor cells in the developing cerebral cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33, 4216–4233.

    CAS  Google Scholar 

  66. Wu, H. M., Zhang, L. F., Ding, P. S., Liu, Y. J., Wu, X., Zhou, J. N. (2014). Microglial activation mediates host neuronal survival induced by neural stem cells. Journal of Cellular and Molecular Medicine.

  67. Boulanger, L. M. (2009). Immune proteins in brain development and synaptic plasticity. Neuron, 64, 93–109.

    CAS  PubMed  Google Scholar 

  68. Bonfanti, L., & Peretto, P. (2011). Adult neurogenesis in mammals—a theme with many variations. The European Journal of Neuroscience, 34, 930–950.

    PubMed  Google Scholar 

  69. van den Berge, S. A., van Strien, M. E., & Hol, E. M. (2013). Resident adult neural stem cells in Parkinson’s disease–the brain’s own repair system? European Journal of Pharmacology, 719, 117–127.

    PubMed  Google Scholar 

  70. Hickey, W. F. (1999). Leukocyte traffic in the central nervous system: the participants and their roles. Seminars in Immunology, 11, 125–137.

    CAS  PubMed  Google Scholar 

  71. Whitney, N. P., Eidem, T. M., Peng, H., Huang, Y., & Zheng, J. C. (2009). Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. Journal of Neurochemistry, 108, 1343–1359.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Tian, L., Rauvala, H., & Gahmberg, C. G. (2009). Neuronal regulation of immune responses in the central nervous system. Trends in Immunology, 30, 91–99.

    CAS  PubMed  Google Scholar 

  73. Northrop, N. A., & Yamamoto, B. K. (2011). Neuroimmune pharmacology from a neuroscience perspective. Journal of Neuroimmune Pharmacology: The Official Journal of the Society on NeuroImmune Pharmacology, 6, 10–19.

    Google Scholar 

  74. Gonzalez-Perez, O., Garcia-Verdugo, J. M., Quinones-Hinojosa, A., Luquin, S., Gudino-Cabrera, G., & Gonzalez-Castaneda, R. E. (2012). Neural stem cells in the adult brain: from benchside to clinic. Stem Cells International, 2012, 378356.

    PubMed Central  PubMed  Google Scholar 

  75. Ourednik, J., Ourednik, V., Lynch, W. P., Schachner, M., & Snyder, E. Y. (2002). Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nature Biotechnology, 20, 1103–1110.

    CAS  PubMed  Google Scholar 

  76. Pluchino, S., Quattrini, A., Brambilla, E., Gritti, A., Salani, G., Dina, G., et al. (2003). Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature, 422, 688–694.

    CAS  PubMed  Google Scholar 

  77. Pluchino, S., Zanotti, L., Rossi, B., Brambilla, E., Ottoboni, L., Salani, G., & Martinello, M. (2005). Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature, 436, 266–271.

    CAS  PubMed  Google Scholar 

  78. Martino, G., & Pluchino, S. (2006). The therapeutic potential of neural stem cells. Nature Reviews. Neuroscience, 7, 395–406.

    CAS  PubMed  Google Scholar 

  79. Martino, G., Butti, E., & Bacigaluppi, M. (2014). Neurogenesis or non-neurogenesis: that is the question. The Journal of Clinical Investigation, 124, 970–973.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Ziv, Y., Ron, N., Butovsky, O., Landa, G., Sudai, E., Greenberg, N., Cohen, H., et al. (2006). Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neuroscience, 9, 268–275.

    CAS  PubMed  Google Scholar 

  81. Yirmiya, R., & Goshen, I. (2011). Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain, Behavior, and Immunity, 25, 181–213.

    CAS  PubMed  Google Scholar 

  82. Mishra, S. K., Braun, N., Shukla, V., Füllgrabe, M., Schomerus, C., Korf, H. W., et al. (2006). Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development, 133, 675–684.

    CAS  PubMed  Google Scholar 

  83. Trujillo, C. A., Negraes, P. D., Schwindt, T. T., Lameu, C., Carromeu, C., Muotri, A. R., et al. (2012). Kinin-B2 receptor activity determines the differentiation fate of neural stem cells. The Journal of Biological Chemistry, 287, 44046–44061.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Schulze-Topphoff, U., Prat, A., Bader, M., Zipp, F., & Aktas, O. (2008). Roles of the kallikrein/kinin system in the adaptive immune system. International Immunopharmacology, 8, 155–160.

    CAS  PubMed  Google Scholar 

  85. Thornton, E., Ziebell, J. M., Leonard, A. V., & Vink, R. (2010). Kinin receptor antagonists as potential neuroprotective agents in central nervous system injury. Molecules, 15, 6598–6618.

    CAS  PubMed  Google Scholar 

  86. Noda, M., Sasaki, K., Ifuku, M., & Wada, K. (2007a). Multifunctional effects of bradykinin on glial cells in relation to potential anti-inflammatory effects. Neurochemistry International, 51, 185–191.

    CAS  PubMed  Google Scholar 

  87. Noda, M., Kariura, Y., Pannasch, U., Nishikawa, K., Wang, L., Seike, T., et al. (2007b). Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia. Journal of Neurochemistry, 101, 397–410.

    CAS  PubMed  Google Scholar 

  88. Sarit, B. S., Lajos, G., Abraham, D., Ron, A., & Sigal, F. B. (2012). Inhibitory role of kinins on microglial nitric oxide and tumor necrosis factor-a production. Peptides, 35, 172–181.

    CAS  PubMed  Google Scholar 

  89. Ferrari, D., Gulinelli, S., Salvestrini, V., Lucchetti, G., Zini, R., Manfredini, R., et al. (2011). Purinergic stimulation of human mesenchymal stem cells potentiates their chemotactic response to CXCL12 and increases the homing capacity and production of proinflammatory cytokines. Experimental Hematology, 39, 360–374.

    CAS  PubMed  Google Scholar 

  90. Boccazzi, M., Rolando, C., Abbracchio, M. P., Buffo, A., & Ceruti, S. (2014). Purines regulate adult brain subventricular zone cell functions: contribution of reactive astrocytes. Glia, 62, 428–439.

    PubMed  Google Scholar 

  91. Wong, G., Goldshmit, Y., & Turnley, A. M. (2004). Interferon-gamma but not TNF alpha promotes neuronal differentiation and neurite outgrowth of murine adult neural stem cells. Experimental Neurology, 187, 171–177.

    CAS  PubMed  Google Scholar 

  92. Zheng, M., Liu, J., Ruan, Z., Tian, S., Ma, Y., Zhu, J., & Li, G. (2013). Intrahippocampal injection of Ab1-42 inhibits neurogenesis and down-regulates IFN-g and NF-kB expression in hippocampus of adult mouse brain. Amyloid: The International Journal of Experimental and Clinical Investigation: The Official Journal of the International Society of Amyloidosis, 20, 13–20.

    Google Scholar 

  93. Hirsch, M., Knight, J., Tobita, M., Soltys, J., Panitch, H., & Mao-Draayer, Y. (2009). The effect of interferon-beta on mouse neural progenitor cell survival and differentiation. Biochemical and Biophysical Research Communications, 388, 181–186.

    CAS  PubMed  Google Scholar 

  94. Cuadrado, E., Jansen, M. H., Anink, J., De Filippis, L., Vescovi, A. L., Watts, C., et al. (2013). Chronic exposure of astrocytes to interferon-a reveals molecular changes related to Aicardi-Goutieres syndrome. Brain: A Journal of Neurology, 136, 245–258.

    Google Scholar 

  95. Ryan, S. M., O’Keeffe, G. W., O’Connor, C., Keeshan, K., & Nolan, Y. M. (2013). Negative regulation of TLX by IL-1β correlates with an inhibition of adult hippocampal neural precursor cell proliferation. Brain, Behavior, and Immunity, 33, 7–13.

    CAS  PubMed  Google Scholar 

  96. Green, H. F., Treacy, E., Keohane, A. K., Sullivan, A. M., O’Keeffe, G. W., & Nolan, Y. M. (2012). A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells. Molecular and Cellular Neurosciences, 49, 311–321.

    CAS  PubMed  Google Scholar 

  97. Nakanishi, M., Niidome, T., Matsuda, S., Akaike, A., Kihara, T., & Sugimoto, H. (2007). Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. The European Journal of Neuroscience, 25, 649–658.

    PubMed  Google Scholar 

  98. Erta, M., Quintana, A., & Hidalgo, J. (2012). Interleukin-6, a major cytokine in the central nervous system. International Journal of Biological Sciences, 8, 1254–1266.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Liu, Y. P., Lin, H. I., & Tzeng, S. F. (2005). Tumor necrosis factor-alpha and interleukin-18 modulate neuronal cell fate in embryonic neural progenitor culture. Brain Research, 1054, 152–158.

    CAS  PubMed  Google Scholar 

  100. Perez-Asensio, F. J., Perpiñá, U., Planas, A. M., & Pozas, E. (2013). Interleukin-10 regulates progenitor differentiation and modulates neurogenesis in adult brain. Journal of Cell Science, 126, 4208–4219.

    CAS  PubMed  Google Scholar 

  101. Zhu, Y., Matsumoto, T., Mikami, S., Nagasawa, T., & Murakami, F. (2009). SDF1/CXCR4 signalling regulates two distinct processes of precerebellar neuronal migration and its depletion leads to abnormal pontine nuclei formation. Development, 136, 1919–1928.

    CAS  PubMed  Google Scholar 

  102. Schwartz, C. M., Tavakoli, T., Jamias, C., Park, S. S., Maudsley, S., Martin, B., et al. (2012). Stromal factors SDF1α, sFRP1, and VEGFD induce dopaminergic neuron differentiation of human pluripotent stem cells. Journal of Neuroscience Research, 90, 1367–1381.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Yang, S., Edman, L. C., Sánchez-Alcañiz, J. A., Fritz, N., Bonilla, S., Hecht, J., et al. (2013). Cxcl12/Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons. Development, 140, 4554–4564.

    CAS  PubMed  Google Scholar 

  104. Iosif, R. E., Ekdahl, C. T., Ahlenius, H., Pronk, C. J., Bonde, S., Kokaia, Z., et al. (2006). Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26, 9703–9712.

    CAS  Google Scholar 

  105. Ji, R., Tian, S., Lu, H. J., Lu, Q., Zheng, Y., Wang, X., et al. (2013). TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. The Journal of Immunology: Official Journal of the American Association of Immunologists, 191, 6165–6177.

    CAS  Google Scholar 

  106. Wu, R., Tang, Y., Zang, W., Wang, Y., Li, M., Du, Y., et al. (2014). MicroRNA-128 regulates the differentiation of rat bone mesenchymal stem cells into neuron-like cells by Wnt signaling. Molecular and Cellular Biochemistry, 387, 151–158.

    CAS  PubMed  Google Scholar 

  107. Zhang, X., Nan, Y., Wang, H., Chen, J., Wang, N., Xie, J., et al. (2013). Model microgravity enhances endothelium differentiation of mesenchymal stem cells. Die Naturwissenschaften, 100, 125–133.

    CAS  PubMed  Google Scholar 

  108. Chen, P. M., Yen, M. L., Liu, K. J., Sytwu, H. K., & Yen, B. L. (2011). Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. Journal of Biomedical Science, 18, 49.

    PubMed Central  PubMed  Google Scholar 

  109. De Miguel, M. P., Fuentes-Julián, S., Blázquez-Martínez, A., Pascual, C. Y., Aller, M. A., Arias, J., & Arnalich-Montiel, F. (2012). Immunosuppressive properties of mesenchymal stem cells: advances and applications. Current Molecular Medicine, 12, 574–591.

    PubMed  Google Scholar 

  110. Dazzi, F., & Krampera, M. (2011). Mesenchymal stem cells and autoimmune diseases. Best Practice & Research. Clinical Haematology, 24, 49–57.

    CAS  Google Scholar 

  111. Cuerquis, J., Romieu-Mourez, R., François, M., Routy, J. P., Young, Y. K., Zhao, J., & Eliopoulos, N. (2014). Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-γ and tumor necrosis factor-α stimulation. Cytotherapy, 16, 191–202.

    CAS  PubMed  Google Scholar 

  112. Schurgers, E., Kelchtermans, H., Mitera, T., Geboes, L., & Matthys, P. (2010). Discrepancy between the in vitro and in vivo effects of murine mesenchymal stem cells on T-cell proliferation and collagen-induced arthritis. Arthritis Research & Therapy, 12, R31.

    Google Scholar 

  113. Beyth, S., Borovsky, Z., Mevorach, D., Liebergall, M., Gazit, Z., Aslan, H., et al. (2005). Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 105, 2214–2219.

    CAS  PubMed  Google Scholar 

  114. Bai, L., Lennon, D. P., Eaton, V., Maier, K., Caplan, A. I., Miller, S. D., & Miller, R. H. (2009). Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia, 57, 1192–1203.

    PubMed Central  PubMed  Google Scholar 

  115. Duijvestein, M., Wildenberg, M. E., Welling, M. M., Hennink, S., Molendijk, I., van Zuylen, L., et al. (2011). Pretreatment with interferon-γ enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem Cells, 29, 1549–1558.

    CAS  PubMed  Google Scholar 

  116. Xiao, J., Zhang, C., Zhang, Y., Zhang, X., Zhao, J., Liang, J., et al. (2012). Transplantation of adipose-derived mesenchymal stem cells into a murine model of passive chronic immune thrombocytopenia. Transfusion, 52, 2551–2558.

    CAS  PubMed  Google Scholar 

  117. Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106, 1755–1761.

    CAS  PubMed  Google Scholar 

  118. Gerdoni, E., Gallo, B., Casazza, S., Musio, S., Bonanni, I., & Pedemonte, E. (2007). Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Annals of Neurology, 61, 219–227.

    CAS  PubMed  Google Scholar 

  119. Benvenuto, F., Ferrari, S., Gerdoni, E., Gualandi, F., Frassoni, F., Pistoia, V., et al. (2007). Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells, 25, 1753–1760.

    CAS  PubMed  Google Scholar 

  120. Zhou, Y., Day, A., Haykal, S., Keating, A., & Waddell, T. K. (2013). Mesenchymal stromal cells augment CD4+ and CD8+ T-cell proliferation through a CCL2 pathway. Cytotherapy, 15, 1195–1207.

    CAS  PubMed  Google Scholar 

  121. Liotta, F., Angeli, R., Cosmi, L., Filì, L., Manuelli, C., Frosali, F., et al. (2008). Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells, 26, 279–289.

    CAS  PubMed  Google Scholar 

  122. Thakur, R. S., Tousif, S., Awasthi, V., Sanyal, A., Atul, P. K., Punia, P., & Das, J. (2013). Mesenchymal stem cells play an important role in host protective immune responses against malaria by modulating regulatory T cells. European Journal of Immunology, 43, 2070–2077.

    CAS  PubMed  Google Scholar 

  123. Sun, J., Zhou, W., Ma, D., & Yang, Y. (2010). Endothelial cells promote neural stem cell proliferation and differentiation associated with VEGF activated Notch and Pten signaling. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 239, 2345–2353.

    CAS  Google Scholar 

  124. Chen, J., Zhang, Z. G., Li, Y., Wang, L., Xu, Y. X., Gautam, S. C., et al. (2003). Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circulation Research, 92, 692–699.

    CAS  PubMed  Google Scholar 

  125. Taguchi, A., Soma, T., Tanaka, H., Kanda, T., Nishimura, H., Yoshikawa, H., et al. (2004). Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. The Journal of Clinical Investigation, 114, 330–338.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Melief, S. M., Zwaginga, J. J., Fibbe, W. E., & Roelofs, H. (2013). Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Translational Medicine, 2, 455–463.

    PubMed Central  PubMed  Google Scholar 

  127. Waterman, R. S., Tomchuck, S. L., Henkle, S. L., & Betancourt, A. M. (2010). A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One, 5, e10088.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

H.U. acknowledges grant support by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Provost’s Office for Research of the University of São Paulo, Grant number: 2011.1.9333.1.3 (NAPNA-USP), Brazil. I.C.N.’s postdoctoral research is supported by a CNPq fellowship. A.T. acknowledges grant support from the German Federal Ministry of Education and Research (BMBF 1315883; BMBF 01DN13037). J.B. acknowledges support from MaDaKos (BMBF, 16N10872, 990101-088).

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henning Ulrich or Attila Tárnok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulrich, H., do Nascimento, I.C., Bocsi, J. et al. Immunomodulation in Stem Cell Differentiation into Neurons and Brain Repair. Stem Cell Rev and Rep 11, 474–486 (2015). https://doi.org/10.1007/s12015-014-9556-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9556-6

Keywords

Navigation